Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Material Radiation Synthesis of an Imidazole Polymeric Ionic Liquid Gel with High Adsorption Capacity for Perrhenate

Dong Han¹, Xingxiao Li¹, Jing Peng¹, Ling Xu², Jiuqiang Li¹, Huibo Li³, Maolin

Zhai¹

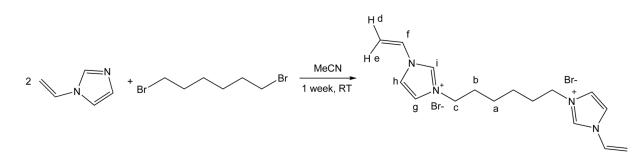
¹Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation

Chemistry Key Laboratory of Fundamental Science, the Key Laboratory of Polymer

Chemistry and Physics of the Ministry of Education, College of Chemistry and

Molecular Engineering, Peking University, Beijing 100871, China

² Department of Energy and Resources Engineering, College of Engineering, Peking


University, Beijing 100871, P. R. China

³China Institute of Atomic Energy, Beijing 102413, China

*Corresponding author: *E-mail address:* mlzhai@pku.edu.cn

1. Synthesis and Characterization of C₆vim₂Br₂

24.4 g (0.100 mol) 1,6-dibromohexane and 21.0 g (0.223 mol) 1-vinylimidazole was mixed into 30mL acetonitrile, and kept in dark for 1 week at room temperature, then white solid product was obtained (Scheme S1). The crude product was filtered and washed by acetone for several times, and then dried in air to get the final product $C_6 vim_2 Br_2$.

Scheme S1 Synthesis route of C₆vim₂Br₂

 $C_6 vim_2 Br_2$ was characterized by ¹H NMR (Bruker AVANCE III, 500 MHz), Elemental analysis (EA, Elementar Vario MICRO CUBE) and ESI-MS (Bruker Apex IV FTMS, postive mode). ¹H NMR(d₆-DMSO): δ =1.32(4H_a), 1.86(4H_b), 4.24(4H_c), 5.44(2H_d), 6.01(2H_e), 7.34(2H_f), 8.01(2H_g), 8.26(2H_h), 9.71(2H_i). EA: 13.0% N, 44.4% C, 5.6% H, which were agreed with the calculated data. ESI-MS: the main peaks occurred at m/z=351.1 and 353.1, which were the isotope peaks of C₆vim₂Br⁺.

2. Adsorption capacities of reported ReO4⁻ adsorbents

Adsorption capacities of recently reported ReO_4^- adsorbents were listed in Table S2. PC₂vimBr gel had the highest capacity of Re at $8.6 \times 10^2 \text{ mg} \text{ g}^{-1}$.

Adsorbent	Adsorption capacity (mg·g ⁻¹) ^a	Remarks	Ref.
PS-g-4VP-IE	252	theoretical maximum capacity	[1]

Table S1 Adsorption capacities of reported ReO4⁻ adsorbents

bio-char from Acidosasa edulis	14.6	under the optimum conditions.	[2]
surface ion-imprinted microsphere	62.8	pH = 6, Langmuir model	[3]
2-VP grafted PP	<i>ca.</i> 113	pH = 2.2, estimated from figures	[4]
amino-functionalizednano-SiO2	3.68	pH = 2.0, Langmuir model	[5]
gel-like polymers containing polyamine	803	Langmuir model	[6]
PC ₂ vimBr gel	8.6×10 ²	Langmuir model	This work

^a Unit of adsorption capacity was converted to mg·g⁻¹(Re) to make it easy to be compared

References

- 1. J. H. Zu, M. S. Ye, P. Y. Wang, F. D. Tang and L. F. He, *RSC Adv.*, 2016, **6**, 18868-18873.
- 2. H. Hu, B. Jiang, J. Zhang and X. Chen, *RSC Adv.*, 2015, **5**, 104769-104778.
- 3. X. Shu, L. Shen, Y. Wei and D. Hua, *Journal of Molecular Liquids*, 2015, **211**, 621-627.
- 4. J.-H. Zu, Y.-Z. Wei, M.-S. Ye, F.-D. Tang, L.-F. He and R.-Q. Liu, *Nuclear Science and Techniques*, 2015, **26**, 510302 (510307 pp.)-510302 (510307 pp.).
- 5. Y. Li, Q. Wang, Q. Li, Z. Zhang, L. Zhang and X. Liu, *Journal of the Taiwan Institute of Chemical Engineers*, 2015, **55**, 126-132.
- 6. B. Gierczyk, M. Ceglowski and M. Zalas, *Plos One*, 2015, **10**.