Electronic Supplementary Information

for

Synthesis, structure, photophysical, electrochemical properties and antibacterial activity of brominated BODIPYs

Dijo Prasannan^a, Darpan Raghav^b, Subramaniam Sujatha^a, Haritha Hareendrakrishna kumar^a, Krishnan Rathinasamy^b*and Chellaiah Arunkumar^a*

^aBioinorganic Materials Research Laboratory, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala, India - 673 601; E-mail: arunkumarc@nitc.ac.in ^bSchool of Biotechnology, National Institute of Technology Calicut, Kozhikode, Kerala, India - 673 601; Email: rathin@nitc.ac.in

Contents

Figure S1. ¹H NMR spectrum of 5-(4-Methylphenyl)dipyrromethane.

Figure S2.¹H NMR spectrum of 5-(4-*tert*-Butylphenyl) dipyrromethane.

Figure S3. ¹H NMR spectrum of 5-(4-N,N'-Dimethylaminophenyl) dipyrromethane.

Figure S4. ¹H NMR spectrum of compound, 1a.

Figure S5. ¹H NMR spectrum of compound, 1b.

Figure S6. ¹H NMR spectrum of compound, 2.

Figure S7.¹H NMR spectrum of compound, 2a.

Figure S8.¹H NMR spectrum of compound, 2b.

Figure S9.¹H NMR spectrum of compound, 3.

Figure S10.¹H NMR spectrum of compound, 3a.

Figure S11. ¹H NMR spectrum of compound, **3b**.

Figure S12. ¹H NMR spectrum of compound, 4.

Figure S13. ¹H NMR spectrum of compound, 4a.

Figure S14. ¹H NMR spectrum of compound, 4b.

- Figure S15. ¹H NMR spectrum of compound, 5b.
- Figure S16. ¹³C NMR spectrum of compound, 1a.
- Figure S17. ¹³C NMR spectrum of compound, 1b.
- Figure S18. ¹³C NMR spectrum of compound, 2a.
- Figure S19. ¹³C NMR spectrum of compound, 2b.
- Figure S20. ¹³C NMR spectrum of compound, 3a.
- Figure S21. ¹³C NMR spectrum of compound, 3b.
- Figure S22. ¹³C NMR spectrum of compound, 4a.
- Figure S23. ¹³C NMR spectrum of compound, 4b.
- Figure S24. ¹³C NMR spectrum of compound, 5b.
- Figure S25. Absorbance spectra of compounds 5, 5a and 5b in dichloromethane.
- Figure S26. Differential pulse voltammograms of compounds 2, 2a and 2b in dichloromethane.
- Figure S27. Comparison of IR spectra of compounds 2, 2a and 2b.
- Figure S28. Plot of change in absorbance of DPBF *vs*. irradiation time in the presence of 1, 1a and 1b.
- Figure S29. Photo-images of BODIPYs in CH₂Cl₂ under (a) UV and (b) visible light.
- Figure S30. Mass spectrum of compound 1a.
- Figure S31. Mass spectrum of compound 1b.
- Figure S32. Mass spectrum of compound 2a.
- Figure S33. Mass spectrum of compound 2b.
- Figure S34. Mass spectrum of compound 3a.
- Figure S35. Mass spectrum of compound 3b.
- Figure S36. Mass spectrum of compound 4a.
- Figure S37. Mass spectrum of compound 4b.

Figure S38. Mass spectrum of compound 5a.

- Figure S39. Mass spectrum of compound 5b.
- Table S1. Solvatochromic data for compounds, 1-5.
- Table S2. Distances (in Å) for different types of interactions in BODIPYs, 1, 2, 2a, 3, 5 and 5b.
- **Table S3**. Comparison of IC_{50} values of different BODIPYs against *BS* and *EC*.

Figure S1. ¹H NMR spectrum of 5-(4-Methylphenyl) dipyrromethane.

Figure S2.¹H NMR spectrum of 5-(4-*tert*-Butylphenyl) dipyrromethane.

Figure S3. ¹H NMR spectrum of 5-(4-N,N'-Dimethylaminophenyl) dipyrromethane.

Figure S4. ¹H NMR spectrum of compound, 1a.

Figure S5. ¹H NMR spectrum of compound, 1b.

Figure S6. ¹H NMR spectrum of compound, 2.

Figure S7. ¹H NMR spectrum of compound, 2a.

Figure S8. ¹H NMR spectrum of compound, 2b.

Figure S9. ¹H NMR spectrum of compound, **3**.

Figure S10. ¹H NMR spectrum of compound, 3a.

Figure S11. ¹H NMR spectrum of compound, **3b**.

Figure S12. ¹H NMR spectrum of compound, 4.

Figure S13. ¹H NMR spectrum of compound, 4a.

Figure S14. ¹H NMR spectrum of compound, 4b.

Figure S15. ¹H NMR spectrum of compound, 5b.

Figure S16. ¹³C NMR spectrum of compound, 1a.

Figure S17. ¹³C NMR spectrum of compound, 1b.

Figure S18. ¹³C NMR spectrum of compound, 2a.

Figure S19. ¹³C NMR spectrum of compound, 2b.

Figure S20. ¹³C NMR spectrum of compound, 3a.

Figure S21. ¹³C NMR spectrum of compound, 3b.

Figure S22. ¹³C NMR spectrum of compound, 4a.

Figure S23. ¹³C NMR spectrum of compound, 4b.

Figure S24. ¹³C NMR spectrum of compound, 5b.

Figure S25. Absorbance spectra of compounds 5, 5a and 5b in dichloromethane.

Figure S26. Differential pulse voltammograms of compounds 2, 2a and 2b in dichloromethane.

Figure S27. Comparison of IR spectra of compounds 2, 2a and 2b.

Figure S28.Plot of change in absorbance of DPBF *vs.* irradiation time in the presence of 1, 1a and 1b.

Figure S29. Photo-images of BODIPYs in CH₂Cl₂under (a) UV and (b) visible light.

Figure S30. Mass spectrum of compound 1a

Figure S31. Mass spectrum of compound 1b

Figure S32. Mass spectrum of compound 2a

Figure S34. Mass spectrum of compound 3a

Figure S35. Mass spectrum of compound 3b

Figure S36. Mass spectrum of compound 4a

Figure S37. Mass spectrum of compound 4b

Figure S39. Mass spectrum of compound 5b

Comp ound	Solvent	λ _{max} (n m)	λ _{em} (n m)	Stokes shift, Δ_{\max} (cm ⁻¹)	Compo und	Solvent	λ _{max} (n m)	λ _{em} (n m)	Stokes shift, ∆ _{max} (cm ⁻¹)
1 ⁱ	MeOH	497	514	665	- 3b	MeOH	539	560	696
	MeCN	496	513	668		MeCN	538	560	730
	THF	499	516	660		THF	542	562	657
	Toluene	501	522	810		Toluene	544	564	652
1.01	MeOH	512	537	909	4	MeOH	488	-	-
	MeCN	511	537	947		MeCN	483	-	-
18.	THF	515	540	899		THF	492	543	1868
	Toluene	521	543	778		Toluene	498	626	4068
	MeOH	533	556	776	- 4a	MeOH	514	546	1140
1b ⁱ	MeCN	531	557	879		MeCN	516	549	1165
	THF	535	558	770		THF	516	549	1165
	Toluene	540	565	819		Toluene	521	613	2881
2	MeOH	496	511	573	4b	MeOH	531	559	943
	MeCN	495	510	594		MeCN	528	559	1050
	THF	498	512	549		THF	532	547	515
	Toluene	501	518	655		Toluene	536	608.5	2236
2a	MeOH	511	535	878	5	MeOH	493	508	599
	MeCN	509	536	989		MeCN	493	508	599
	THF	513	537	871		THF	495	510	594
	Toluene	518	540	787		Toluene	501	518	655
	MeOH	532	555	779	- 5a	MeOH	507	536	1067
2h	MeCN	530	555	849		MeCN	510	535	916
20	THF	533	557	808		THF	512	539	978
	Toluene	538	560	730		Toluene	519	545	919
3	MeOH	495	512	671	5b	MeOH	490	521	1214
	MeCN	495	512	671		MeCN	504	516	461
	THF	499	515	623		THF	507	526	712
	Toluene	501	520	729		Toluene	512	532	734
3 a	MeOH	511	535	878					
	MeCN	510	536	951					
	THF	514	538	868					
	Toluene	518	541	820					

Table S1.Solvatochromic data for compounds, 1-5.

ⁱAbsorption of **1**, **1a** and **1b** in toluene (X.-F. Zhangand X. Yang, *J. Phys. Chem. B.*, 2013, 117, 5533-5539) and photophysical properties of **1**, **1a** and **1b** in acetonitrile, methanol and toluene at room temperature at λ_{ex} = 494, 493 and 501 nm respectively (M. Baruah*et al., J. Org. Chem.*, 2005, 70, 4152-4157).

Interaction ⁱ	1 ⁱⁱ	2 ⁱⁱ	2a ⁱⁱ	3 ⁱⁱ	5 ⁱⁱ	5b ⁱⁱ
$C_{(Pyr)} \cdots C_{(Ph)}$	3.298 (2)	-	-	-	3.370 (2)	-
$C_{(Pvr)} \cdots C_{(Pvr)}$	3.348-3.398 (3)	-	3.386	-	-	-
N-B····C _(Ph)	3.748 (2)	-	-	-	-	-
N-B…H _(Ph)	3.022	-	-	-	3.072 (2)	-
N-B…H _(Sol)	2.968 (2)	-	-	-	2.754 (2)	3.098 (2)
N-B…H _(Pyr)	3.100	-	3.042 (2)	-	-	-
B-F…H _(Ph)	2.623-2.654 (3)	2.554 (2)	2.631 (2)	2.533-2.578 (4)	2.638 (2)	-
B-F…H _(Me)	-	2.602 (2)	-	-	-	-
B-F…H _(Sol)	2.407 (2)	-	-	-	1.942 (2)	-
B-F…H _(Hydroxy)	-	-	-	-	-	1.988 (2)
B-F…H _(Pyr)	2.348-2.562 (5)	-	2.359-2.640 (4)	-	-	2.484 (2)
B-F…O _(Sol)	-	-	-	-	2.838 (2)	-
B-F···O _(Hydroxy)	-	-	-	-	-	2.731 (2)
B-F····C _(Ph)	2.982 (2)	-	-	-	-	3.147 (2)
B-F…C _(Pyr)	3.120 (2)	-	-	-	-	-
N-B…O(Sol)	-	-	-	-	3.501 (2)	-
(Hydroxy)OO(Sol)	-	-	-	-	2.627-2.791 (4)	-
(Hydroxy)HO(Sol)	-	-	-	-	1.818 (2)	-
(Sol)HO(Hydroxy)	-	-	-	-	1.878 (2)	-
(Hydroxy)H…H(Sol)	-	-	-	-	2.272-2.395 (4)	-
(Pyr)H…H(Pyr)	-	2.338	-	-	-	-
(Sol)H…C(Ph)	-	-	-	-	2.597 (2)	-
(Ph)H…C(Pyr)	-	-	-	-	-	2.757 (2)
$_{(Ph)}H\cdots C_{(Ph)}$	2.818 (2)	-	-	-	-	-
(Pyr)H····C(Ph)	2.754-2.886 (4)	2.865 (2)	-	-	-	-
(Pyr)Br…C(Ph)	-	-	3.449 (2)	-	-	-
(Ph)Br…C(Pyr)	-	-	-	-	-	3.361 (2)
$_{(Ph)}Br \cdots H_{(Pyr)}$	-	-	-	-	-	2.946 (2)
(Pyr)N····H(Ph)	2.737	-	-	-	-	-

Table S2. Distances (in Å) for different types of interactions in BODIPYs, 1, 2, 2a, 3, 5 and 5b.

^{*i*}Different types. ^{*ii*}Value in parenthesis gives the number of interactions present in the molecule.

Compound	IC ₅₀ in <i>BS (μM)</i>	IC ₅₀ in <i>EC (μM)</i>	Compound	IC ₅₀ in <i>BS (μM)</i>	IC ₅₀ in <i>EC (μM)</i>
1	27	-	3b	12	-
1 a	21	34	4	18	38
1b	20	34	4a	10	41
2	36	-	4b	6	34
2a	10	22	5	18	17
2b	13	38	5a	10	25
3	-	-	5b	5	26
3a	8	-	-	-	-

Table S3. Comparison of IC_{50} values of different BODIPYs against *BS* and *EC*.