Efficient Energy Transfer in Ethynyl Bridged Corrole-BODIPY Dyads

Yu Yan,[†]a Fan Wu,[†]a Jiawei Qin,^a Haijun Xu,^b Maohu Shi,^a Jingfeng Zhou,^a John Mack,^{c,*} Gertrude Fomo,^c Tebello Nyokong,^c and Zhen Shen ^{a,*}

Table of contents

1. Experiment details

- 1.1 Materials and equipment
- 1.2 Synthesis details

2. Supplementary date

2.1 Figure S1.	¹ H NMR spectrum of conjugate 5 in CDCl ₃ at 298 K.
2.2 Figure S2.	¹ H NMR spectrum of conjugate 6 in CDCl ₃ at 298 K.
2.3 Figure S3.	¹ H NMR spectrum of conjugate 7 in CDCl ₃ at 298 K.
2.4 Figure S4.	¹³ C NMR spectrum of conjugate 5 in CDCl ₃ at 298 K.
2.5 Figure S5.	¹³ C NMR spectrum of conjugate 6 in CDCl ₃ at 298 K.
2.6 Figure S6.	¹³ C NMR spectrum of conjugate 7 in CDCl ₃ at 298 K.
2.7 Figure S7.	Absorption and emission spectra of 1-4 in toluene.
2.8 Figure S8.	Absorption and emission spectra of 5-7 in toluene.
2.9 Figure S9.	Absorption and emission spectra of BODIPYs 2-ref and 3-ref.
2.10 Figure S10.	Emission spectra of 5-7 in toluene.
2.11 Table S1.	

References.

1. Experiment details

1.1 Materials and equipment

All reagents were obtained from commercial suppliers and used without further purification, unless otherwise indicated. Triethylamine (Et₃N) was distilled from CaH₂ under argon. Toluene was distilled from sodium under argon. Pyrrole and tetra-*n*-butylammonium hexafluorophosphate (TBAPF6) was purchased from Alfa Asar. Triphenylarsane(Asph₃) and Pd₂(dba)₃ were purchases from Acros. The NMR spectra were measured on a Bruker 500 or 400 MHz spectrometer. UV-visible absorption spectra were measured on a Shimadzu UV-2550 double beam spectrophotometer. Fluorescence emission and excitation spectra were measured on a Hitachi F-4600 fluorescence spectrophotometer with a 150 W-xenon arc lamp used as the light source at a working voltage of 400V. Fluorescence quantum yield values were determined on a Varian Eclipse spectrofluorometer. The absorbance values of the solution were between 0.04 and 0.05 at the excitation wavelength. Fluorescence lifetimes were measured using a time correlated single photon counting (TCSPC) setup (FluoTime 200, Picoquant GmbH). The excitation source was a diode laser (LDH-P-C-485 with a 10 MHz repetition rate, and a 88 ps pulse width). HR-MS data were measured on an Aglient 6540Q-TOF with CHCl₃ used as the solvent.

1.2 Synthesis details

5: Under typical Pd-mediated coupling conditions, **4** (37 mg,0.05 mmol), **1** (22.5 mg,0.05 mmol), Asph₃ (20.0 mg, 66 µmol) and Pd₂(dba)₃ (8.0 mg, 8.8 µmol) were placed in a 100 mL single-neck round-bottom flask containing 44 mL of toluene and Et₃N (3:1). The flask was stirred at 38 °C under argon. Asph₃ (15.0 mg, 40 µmol) and Pd₂(dba)₃ (5 mg,5.5 µmol) were added after 6 h, then the mixture was stirred for another 6 h. The solvent was removed under reduced pressure and the mixture was purified by column chromatography (silica gel; CH₂Cl₂/Petroleum ether, 50%) to yield the product (45 mg, 74%). ¹H NMR (CDCl₃, 400 MHZ): δ 9.13 (s,2 H), 8.74 (s, 2 H), 8.58 (s, 4 H), 8.22 (d, J = 6.4 Hz, 2 H), 7.99 (d, J = 7.6 Hz, 2 H), 7.83 (d, J = 8.0 Hz, 2 H), 7.39 (d, J = 8.0 Hz, 2 H), 6.06 (s, 2 H), 2.59 (s, 6 H), 1.51 (s, 6 H). HPMS-ESI: m/z: cald for [C₅₈H₃₄BF₁₂N₆]⁺:1053.2746, found: 1053.2747. **6**: Under typical Pd-mediated coupling, **4** (37 mg,0.05 mmol), **2** (26.9 mg, 0.05 mmol), Asph₃ (20.0 mg, 66 µmol) and Pd₂(dba)₃ (8.0 mg, 8.8 µmol) were placed in a 100 mL single-neck round - bottom flask containing 44 mL of toluene and Et₃N (3:1). The flask was stirred at 38 °C under argon. Asph₃ (15.0 mg, 40 µmol) and Pd₂(dba)₃ (5 mg, 5.5 µmol) were added after 6 h, then the mixture was stirred for another 6 h. The solvent was removed under reduced pressure and the mixture was purified by column chromatography (silica gel; CH₂Cl₂/Petroleum ether, 50%) to yield the product (54.4 mg, 85%). ¹H NMR (CDCl₃, 400 MHZ): δ 9.12 (s, 2 H), 8.75 (s, 4 H), 8.57 (s, 2 H), 8.20 (s, 2 H), 7.98 (d, J = 6.4 Hz, 2 H), 7.78 (d, J = 16.0 Hz, 1 H), 7.66 (s, 3 H), 7.51 (m, 3 H), 7.34 (m, 2 H), 7.27(s, 1 H), 7.23(s, 1 H), 6.65 (s, 1 H), 6.05 (s, 1 H), 2.64(s, 3 H) 1.46 (s, 3 H), 1.42 (s, 3 H). HPMS-ESI: m/z: cald for [C₆₅H₃₈BF₁₂N₆]⁺: 1141.3059, found: 1141.3066.

7: Under typical Pd-mediated coupling, **4** (73 mg, 0.1 mmol), **3** (26.9 mg, 0.05 mmol), Asph₃ (20.0 mg, 66 µmol) and Pd₂(dba)₃ (8.0 mg, 8.8 µmol) were placed in a 100 mL single-neck roundbottom flask containing 44 mL of toluene and Et₃N (3:1). The flask was stirred at 38 °C under argon. Asph₃ (15.0 mg, 40 µmol) and Pd₂(dba)₃ (5 mg,5.5 µmol) were added after 6 h, then the mixture was stirred for another 6 h. The solvent was removed under reduced pressure and the mixture was purified by column chromatography (silica gel; CH₂Cl₂/Petroleum ether, 50%) to yield the product (76.8 mg, 77%). ¹H NMR (CDCl₃, 400 MHZ): δ 9.10 (s, 4 H), 8.74 (s, 8 H), 8.55 (s, 4 H), 8.20 (s, 3 H), 7.99 (S, 4 H), 7.88 (d, J = 14.8 Hz, 2 H), 7.73 (s, 8 H), 7.54 (s, 4 H), 7.38 (d, J =14.4 Hz 4 H), 6.73 (s, 2 H), 1.50 (s, 6 H). HPMS-ESI: m/z: cald for [C₁₁₁H₅₆BF₂₂N₁₀]⁺: 1957.4431, found: 1956.4439.

Figure S1. ¹H NMR spectrum of conjugate **5** in CDCl₃ at 298K.

Figure S2. ¹H NMR spectrum of conjugate 6 in CDCl₃ at 298K.

Figure S3. ¹H NMR spectrum of conjugate 7 in CDCl₃ at 298K.

Figure S4. ¹³C NMR spectrum of conjugate 5 in CDCl₃ at 298 K.

Figure S6. ¹³C NMR spectrum of conjugate 7 in CDCl₃ at 298 K.

Figure S7. Absorption (black) and emission (red) spectra of 1-4 in toluene $(1 \times 10^{-5} \text{ M})$ at room temperature. (A) BODIPY 1 (λ_{ex} = 480 nm). (B) BODIPY 2 (λ_{ex} = 540 nm). (C) BODIPY 3 (λ_{ex} = 620 nm). (D) corrole 4 (λ_{ex} = 422 nm).

Figure S8. Absorption (black) and emission (red) spectra of 5-7 in toluene $(1 \times 10^{-5} \text{ M})$ at room temperature. (A) 5 (λ_{ex} = 480 nm). (B) 6 (λ_{ex} = 540 nm). (C) 7 (λ_{ex} = 422 nm).

Figure S9. (A) Absorption (black) and emission (red) spectra of BODIPY **2-ref** in toluene (1 μ M) at 298 K (λ_{ex} = 577 nm). (B) Structure of BODIPY **2-ref**. (C) Absorption (black) and emission (red) spectra of BODIPY **3-ref** in toluene (1 μ M) at 298 K (λ_{ex} = 620 nm). (D) Structure of BODIPY **3-ref**.

Figure S10. (A) Emission spectra of **5** (solid line) and **4** (dashed line) in toluene $(1 \times 10^{-5} \text{ M})$ at room temperature. Red and blue lines are used for fluorescence spectra measured at λ_{ex} = 480 and 422 nm. (B) Emission spectra of **6** (solid line) and 4 (dashed line) in toluene $(1 \times 10^{-5} \text{ M})$ at room temperature. Red and blue lines are used for fluorescence spectra measured at λ_{ex} = 422 and 620 nm. (C) Emission spectra of **7** (solid line) and **3** (dashed line) in toluene $(1 \times 10^{-5} \text{ M})$ at room temperature. Red and blue lines are used for fluorescence spectra measured at λ_{ex} = 422 and 620 nm. (C) Emission spectra of **7** (solid line) and **3** (dashed line) in toluene $(1 \times 10^{-5} \text{ M})$ at room temperature. Red and blue lines are used for fluorescence spectra measured at λ_{ex} = 422 and 620 nm.

2.11

Band ^[a]	# [b]	$E^{[c]}[eV]$	$\lambda_{(calc)}^{[d]}[nm]$	$f^{[e]}$	$\lambda_{(obs)}^{[f]}[nm]$	Wavefunction =[g]
					1	
BDY	S	3.01	412	0.55	505	96 % BDY-H →BDY-L;
DDV	c	2 (1	470	1.05	2	
BDY	3	2.64	470	1.05	30/ 3	96 % BDY-H \rightarrow BDY-L;
BDY	S	2.32	536	1.08	637	96 % BDY-H →BDY-L;
					4 a	
Q	S_1	2.13	582	0.13		58 % s→-a; 18%a→-s;
Q	S_2	2.33	533	0.06		$46 \% a \rightarrow -a; 30\% s \rightarrow -s; \dots$
В	S3	3.26	380	1.20		54 % $s \rightarrow -s$; 50% $a \rightarrow -a$;
Б	54	5.27	508	1.1/	4b	$01 \ / 0 \ a \rightarrow -8, \ 10 \ / 0 \ s \rightarrow -a, \ \dots$
Q	\mathbf{S}_1	2.24	553	0.13	621	37 % a→-a; 34 % s→-a; 19 % s→-s; …
Q	S_2	2.32	536	0.19	575	45 % s→-a; 29 % a→-a;
В	S_3	3.40	365	1.13	122	65 % s→-s; 32 % a→-a;
В	S_4	3.50	354	1.12	-	67 % a→-s; 18 % s→-a;
0	C	0.10	502	0.12	5a	57 0/ 100/
Q	S_1	2.13	583	0.13		5^{\prime} % s \rightarrow -a; 18% a \rightarrow -s;
Q BDV	S_2	2.52	334 412	0.00		$45\% a \rightarrow a, 50\% s \rightarrow s, 17\% s \rightarrow a,$ $96\% RDV_H \rightarrow RDV_I$
B	53 S₄	3 22	385	1 76		$54\% s \rightarrow -s^{-} 37\% a \rightarrow -a^{-}$
B	S_5	3.36	369	1.19		$62\% a \rightarrow -s; 19\% s \rightarrow -a;$
	- 5				5b	
Q	\mathbf{S}_1	2.24	553	0.13	615	37% a→-a; 34% s→-s; 19% s→-a;
Q	S_2	2.31	536	0.18	576	45% s→-a; 29% a→-a; 13% s→-a;
BDY	S_3	3.01	412	0.51	505	96% BDY-H→BDY-L;
В	S4	3.36	369	1.67	426	$64\% \text{ s} \rightarrow -a; 31\% \text{ a} \rightarrow -s; \dots$
В	33	5.49	333	1.12	69	$0/\% a \rightarrow -a, 10\% s \rightarrow -s, \dots$
0	S.	2 1 2	584	0 14	Ua	45% s→BDY-L: 17% a→-s [·]
ŏ	S_2	2.32	535	0.07		$44\% a \rightarrow BDY-L; 23\% s \rightarrow -s;$
BDY	S_3^2	2.54	487	1.75		58% BDY-H→BDY-L; 31% s→BDY-L
В	S_4	3.2	387	1.64		41% s→-s ; 32% a→BDY-L;
В	S_5	3.36	369	1.12		59% a→-s ; 18% s→BDY-L
-	~			~ · · -	6b	• <i></i>
Q	S_1	2.24	554	0.15	616	$36\% a \rightarrow -a; 24\% s \rightarrow -a; \dots$
Q PDV	52 S	2.31	536 487	0.18	5/8 577	33% $s \rightarrow -a$; 30% $a \rightarrow -a$; 7204 RDV H \Rightarrow RDV I $\Rightarrow 20\%$ $a \rightarrow$ RDV I
BDI	53 S.	2.33	407	1.05	377	$30\% \text{ s} \rightarrow \text{s}^{\circ} 23\% \text{ a} \rightarrow \text{a}^{\circ} 20\% \text{ BDV-H} \rightarrow \text{s}^{\circ}$
B	54 S6	3.52	353	0.99	423	$56\% a \rightarrow -s; 27\% s \rightarrow -a;$
	~0				7a	
Q	\mathbf{S}_1	2.10	589	0.06		27% s'→-a; 17% s→-a';
Q	S_2	2.12	584	0.08		21% s→-a'; 18% s→-a;
BDY	S_3	2.18	570	1.07		53% BDY-H→BDY-L ; 18% s→BDY;
Q	S_4	2.31	537	0.26		20% a' \rightarrow -a; 19% a' \rightarrow -a'; 10% s' \rightarrow -s;
Q P	5 5	2.32	5 <i>3</i> 4 305	0.1 1 72		$23\% a \rightarrow -a; 10\% a \rightarrow -a'; 11\% s' \rightarrow -s';$ $1404 s \rightarrow s' \cdot 1404 H = 5 \text{ DDV I} \cdot 1204 s' \rightarrow DDV$
D	\mathfrak{S}_6	5.14	373	4./3		$1470 \text{ s} \rightarrow -8$, $1470 \text{ m} - 3 \rightarrow \text{DD} 1 - \text{L}$, $1370 \text{ s} \rightarrow \text{BD} 1 - \text{L}$ L: 11% BDY-H \rightarrow -s
В	S 7	3.17	391	0.29		21% s' \rightarrow -s: 11% a \rightarrow -a: 11% BDY-H \rightarrow -s'
_	~ /					10% s→-s′; 10% a→-a′;
В	S_8	3.32	374	1.77		21% a'→-s; 20% a'→-s'; 11% a→-s';
В	S_9	3.34	371	0.26		20% BDY→-a; 14% H-5→BDY-L,
						12% s'→BDY-L, 11% a→-s ;

Table S1. TD-DFT calculations for the B3LYP geometries of 1-7carried out with theCAM-B3LYP functional and 6-31G(d) basis sets

Q	S_1	2.11	587	0.07		38% s→-a; 17% a→-s ; 10% BDY-H→-a;
BDY	\mathbf{S}_2	3.17	570	065		45% BDY-H \rightarrow BDY-L ; 13% s' \rightarrow BDY-L,
	_					10% BDY-H→-a';
Q	S_3	2.21	562	0.34		27% a' \rightarrow -a'; 24% s' \rightarrow -a'; 13% s' \rightarrow -s';
Q	S_4	2.29	542	0.45		29% a' \rightarrow -a'; 26% s' \rightarrow -a'; 10% s' \rightarrow -s';
Q	S_5	2.32	535	0.09		40% a→-a; 18% s→-s;
B	S_6	3.15	394	3.65		23% a→-a ; 20% s→-s ; 13% BDY-H→-s;
						11% H-5→BDY-L;
В	S_7	3.21	386	1.35	428	21% s'→-s'; 18% a'→-a';
В	S_8	3.26	381	0.02		46% BDY-H→-a'; 39% s→-a' ;
В	S_9	3.33	373	1.40		52% a→-s ; 14% BDY-H→-a;
					7c	
BDY	S_1	2.18	570	0.62	658	56% BDY-H→BDY-L;
Q	S_2	2.20	563	0.53		25% s'→-a'; 24% a'→-a';
					617	16% BDY-H→BDY-L;
Q	S_3	2.24	554	0.17		32% a→-a; 30% s→-a;
Q	S_4	2.28	543	0.32	570	29% a'→-a'; 28% s'→-a';
Q	S_5	2.31	536	0.13	578	38% s→-a , 28% a→-a ; …
В	S_6	3.19	388	4.04		17% H-5→BDY-L; 16% a'→-a' ;
В	S_7	3.28	378	0.74	170	18% s→-s ; 16% BDY-H→-a;
В	S_8	3.32	373	0.15	420	58% BDY-H→-a; 20% BDY-H→-a';
В	S_9	3.34	371	0.11		46% BDY-H→-a'; 14% BDY-H→-a;

a – Band assignment described in the text. b – The number of the state assigned in terms of ascending energy within the TD-DFT calculation. c-e – Calculated band energies (eV), wavelengths (nm) and oscillator strengths in parentheses (*f*). f – Observed wavelengths (nm) in toluene in Figs 1 and 5 of the main text. The wavelengths of the intense Faraday **B**₀ terms in the Q band region of the MCD spectra of 4-7 are used to assign the observed Q band wavelengths, while the band maxima in the absorption spectra are used for the wavelengths of the corrole B band and the main BODIPY spectral band. g – The wavefunctions based on the eigenvectors predicted by TD-DFT. One-electron transitions between the four frontier π -MOs of the the corrole rings that are associated with Michl's perimeter model,^[11]or between the HOMO (BDY-H) and LUMO (BDY-L) of the BODIPY core are highlighted in bold. H and L denote the HOMO and LUMO of the entire dyad, and an apostrophe is used to distinguish between frontier π -MOs localized on the two corrole rings of 7.

Reference

(a) J. Michl, J. Am. Chem. Soc. 1978, 100, 6801; (b) J. Michl, J. Am. Chem. Soc. 1978, 100, 6812;
 (c) J. Michl, Pure Appl. Chem. 1980, 52, 1549; (d) J. Michl, Tetrahedron 1984, 40, 3845.