Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Material

Reaction of sodium 2-(2-(2,4-dioxopentan-3-ylidene)hydrazinyl) benzenesulfonate with ethylenediamine on Cu(II) and Ni(II) centres: efficient Cu(II) homogeneous catalysts for cyanosilylation of aldehydes

Abdallah G. Mahmoud,^{*a,b*} Kamran T. Mahmudov,^{**a,c*} M. Fátima C. Guedes da Silva,^{**a*} Armando J. L. Pombeiro,^{**a*}

^a Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

^b Department of Chemistry, Faculty of Science, Helwan University, Ain Helwan, Cairo, Egypt

^c Department of Chemistry, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan

*Corresponding authors *E-mail addresses:* kamran_chem@mail.ru, kamran_chem@yahoo.com (Kamran T. Mahmudov) fatima.guedes@tecnico.ulisboa.pt (M. Fátima C. Guedes da Silva) pombeiro@tecnico.ulisboa.pt (Armando J. L. Pombeiro)

1. X-ray analyses

	1	2	3
Empirical formula	$C_{26}H_{38}CuN_8O_{10}S_2$	C ₃₀ H ₆₄ N ₁₀ NiO ₁₇ S ₂	C ₁₃ H ₁₆ CuN ₄ O ₄ S
fw	750.30	959.74	387.90
Temperature (K)	296(2)	293(2)	150(2)
Cryst. Syst.	Monoclinic	Triclinic	Triclinic
Space group	P 21/c	<i>P</i> -1	P -1
<i>a</i> (Å)	7.4179(4)	11.5824(7)	5.1923(10)
b (Å)	20.0875(12)	13.5921(7)	8.6543(16)
c (Å)	11.2037(7)	14.6115(9)	16.704(3)
α, °	90	72.171(3)	81.729(5)
β,°	106.071(2)	75.626(4)	88.354(6)
γ, °	90	85.530(3)	78.606(6)
$V(Å^3)$	1604.19(16)	2121.3(2)	728.2(2)
Ζ	2	2	2
ρ_{calc} (g cm ⁻³)	1.553	1.503	1.769
μ (Mo K α) (mm ⁻¹)	1.465	0.638	1.670
F (000)	782	1020	398
Rfl.total /ind./unique	16062/3597/3035	39682/7996/4331	20570/3657/2708
R _{int}	0.0299	0.1097	0.0749
R1 ^a ($I \ge 2\sigma$)	0.0372	0.0604	0.0407
wR2 ^b $(I \ge 2\sigma)$	0.0971	0.1469	0.0826
GOOF	1.059	1.033	0.995

 Table S1. Crystallographic data and structure refinement details for 1–3.

^{*a*} $RI = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|$. ^{*b*} $wR2 = [\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{o}^{2})^{2}]]^{1/2}$.

1		2		3		
C8 O1	1.228(3)	C6 N1	1.388(8)	C6 N1	1.435(3)	
C10 O2	1.212(3)	C7 N2	1.318(8)	C7 N2	1.321(4)	
C12 N4	1.466(4)	C8 O1	1.233(10)	C8 O1	1.223(4)	
C13 N3	1.480(4)	C10 O2	1.200(9)	C10 N3	1.294(4)	
N1 N2	1.301(3)	C17 N4	1.406(7)	C12 N3	1.477(3)	
N3 Cu1	2.011(2)	C18 N3	1.308(8)	C13 N4	1.481(4)	
N4 Cu1	2.012(2)	C19 O3	1.235(8)	N1 N2	1.316(3)	
Cu1 N3	2.011(2)	C21 O4	1.222(8)	N1 Cu1	1.928(2)	
Cu1 N4	2.013(2)	N1 N2	1.308(7)	N3 Cu1	1.933(2)	
N2 N1 H1N	119(2)	N3 N4	1.315(7)	N4 Cu1	1.986(2)	
N3 Cu1 N3	180.00(11)	N5 Ni1	2.140(8)	O11 Cu1	1.9671(18)	
N3 Cu1 N4	85.00(9)	N6 Ni1	2.125(9)	O12Cu1	2.528	
N3 Cu1 N4	95.00(9)	N7 Ni1	2.137(7)	N1 Cu1 N3	93.65(10)	
N3 Cu1 N4	95.00(9)	N8 Ni1	2.135(8)	N1Cu1 O11	92.05(9)	
N3 Cu1 N4	85.00(9)	N9 Ni1	2.146(8)	N3Cu1 O11	166.71(9)	
N4 Cu1 N4	180.0	N10 Ni1	2.122(8)	N1 Cu1 N4	163.76(10)	
		N10Ni1 N6	92.2(4)	N3 Cu1 N4	86.25(10)	
		N10Ni1 N8	94.6(4)	O11Cu1 N4	91.61(9)	
		N6 Ni1 N8	171.5(3)			
		N10Ni1 N7	172.8(4)			
		N6 Ni1 N7	91.9(3)			
		N8 Ni1 N7	82.0(3)			
		N10Ni1 N5	94.4(4)			
		N6 Ni1 N5	81.2(4)			
		N8 Ni1 N5	93.1(3)			
		N7 Ni1 N5	92.1(3)			
		N10Ni1 N9	82.7(4)			
		N6 Ni1 N9	94.7(4)			
		N8 Ni1 N9	91.3(3)			
		N7 Ni1 N9	91.0(3)			
		N5 Ni1 N9	175.0(3)			

Table S2. Selected bond distances (Å) and angles (°) for 1-3.

Figure S1. H-bond interactions (in dash light blue colour) in compound **1**. H-atoms not involvec in contact interactions were ommited for clarity. Symmetry codes to generate equivalent atoms: *i*) -x,-y,-z; *iii*) -1-x,-y,-z; *iii*) -1+x,y,z; *iv*) x,-1/2-y,1/2+z; *v*) -x,-1/2+y,-1/2-z; *vi*) x,1/2-y,1/2+z; *vii*) - x,1/2+y,-1/2-z; *viii*) -2-x,-y,-z; *ix*) -1-x,-1/2+y,-1/2-z; *x*) -1+x,-1/2-y,1/2+z; *xi*) -1-x,1/2+y,-1/2-z; *xiii*) -1+x,1/2-y,1/2+z; *xiii*) -2+x,y,z; *xiv*) 1+x,y,z; *xv*) 1-x,-y,-z. Hydrogen bonding distances (Å) and angles (°) [d(D···A), \angle (D-H···A)]: N1-H1N···O1 2.579(3), 133(2); N1-H1N···O12 2.970(3), 128.6(19); N3-H3A···O11 3.099(3), 158(3); N3-H3B···O2 2.953(3), 153(2); N4-H4A···O13 3.044(3), 147(3); N4-H4B···O1 2.61(3), 136(2).

Figure S2. The asymmetric unit of **2** showing the H-bond interactions in dash light blue colour. Symmetry codes to generate equivalent atoms: *i*) 2-x,1-y,1-z. Hydrogen bonding distances (Å) and angles (°) $[d(D \cdots A), \angle (D-H \cdots A)]$: N1–H1N…O1 2.583(6), 136(5); N1–H1N…O11 2.825(5), 126(5); N4–H4N…O3 2.566(5), 134(5); N4–H4N…O23 2.924(4), 124(5); N7–H7A…O11 3.039(6), 152; N7–H7B…O22 2.975(7), 157; N9–H9D…O11 3.027(7), 150.

Figure S3. H-bond interactions (in dash light blue colour) in compound **3**. H-atoms not involvec in contact interactions were ommited for clarity. Symmetry codes to generate equivalent atoms: *i*) - 1+x,y,z; *ii*) -x,1-y,1-z; *iii*) 1-x,1-y,1-z; *iv*) -1-x,1-y,1-z; *v*) 1+x,y,z. Hydrogen bonding distances (Å) and angles (°) [d(D···A), \angle (D–H···A)]: N4–H41N···O13 3.002(3), 161(3); N4–H42N···O11 2.975(3), 151(2).

Figure S4. Packing diagrams for compounds 1-3, viewed perpendicular to the bc plane (1), down the crystallographic *c* axis (2), or in a general scenery (3).

2. Calculation of aldehyde cyanosilylation conversion values by ¹H NMR analysis of crude products.

Two examples are provided for conversion calculation of cyanosilylation reaction of two different aldehydes:

a) Table1, entry 16

The ¹H NMR spectrum of crude products from benzaldehyde cyanosilylation under the conditions discribed at Table1, entry 16, is displayed in Figure S5.

Conversion is calculated by dividing characteristic peak area of the corresponding product by sum of characteristic peak areas of substrate and corresponding product.

Conversion (%) = $[a/(a + b)] \times 100\%$

a: characteristic peak area of the corresponding product.

Figure S5. ¹H NMR spectrum of crude products from benzaldehyde cyanosilylation with TMSCN using 5 mol% of catalyst **3** (Table 1, Entry 16).

Characteristic peak area of 2-phenyl-2-((trimethylsilyl)oxy)acetonitrile = 1 Characteristic peak area of benzaldehyde = 0.26Conversion = [1/(1+0.26)]x100 = 79.3%

b) Table 2, entry 4

The ¹H NMR spectrum of crude products from 4-bromobenzaldehyde cyanosilylation under the conditions described at Table 2, is displayed in Figure S6.

Figure S6. ¹H NMR spectrum of crude products from 4-bromobenzaldehyde cyanosilylation with TMSCN using 5 mol% of catalyst **3** (Table 2, Entry 4).

Characteristic peak area of corresponding cyanohydrin trimethylsilyl ether = 1 Characteristic peak area of 4-bromobenzaldehyde = 0.04Conversion = [1/(1+0.04)]x100 = 96.2%

Catalyst	Rea	ction Cond	Conversion	Ref.	
_	Solvent	Time	Temperature	(%)	
		(h)	°C		
3	МеОН	16	25	93	This studv
Ti(O- <i>i</i> -Pr) ₄	CH ₂ Cl ₂	48	-20	86	9a
OH OH					
Cu(II)-(S)-4,4'-bis(4-	n-Pentane	48	40	27.1	9b
carboxyphenyl)-2,2'- bis(diphenylphosphinoyl)-1,1'- binaphthyl					
	Toluene	40	0	94	9c
CH ₃					
Ar = 3,5-dimethylphenyl					
	CH ₂ Cl ₂	96	-40	98	9d
Lewis acid X					
$X = P(O)Ph_2$					
+					
CH ₃ P(O)Ph ₂					
$HC = N \qquad O \qquad Cu \qquad HC = Cu \qquad Cu \qquad HC = Ch \qquad HC = Cu \qquad Cu \qquad HC = Ch \qquad HC = C$	THF	2	25	80	9e
t-Bu t-Bu	CH ₂ Cl ₂	18	-50	95	6a

 Table S3. Comparison of various homogeneous catalysts in the cyanosilylation of benzaldehyde