Supporting Information

Scalable Synthesis of Nano-sandwich N-doped Carbon Materials with

Hierarchical-structure for energy conversion and storage

Kui Ding, Qin Liu, Yakun Bu, Yiyin Huang, Jiangquan Lv, Jing Wu, Syed Comail Abbas and Yaobing Wang*

Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of

Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, PR China

E-mail: wangyb@fjirsm.ac.cn

Source/Reference s	Solution	Loading (mg cm ⁻²)	Activity (V vs. Ag/AgCl)
Our work (NNCM-1050-70)	PBS 50 mM	0.1	$E_{onset} = 0.26$
N-doped carbon nanofibers ¹	PBS 100 mM	0.14	$E_{onset} = 0.12$
Activated Carbon ²	KCl 0.1 M	0.16	$E_{onset} = 0.15$
Activated Carbon ³	PBS 100 mM	0.5	$E_{onset} = 0.12$
HP-Fe-N-Cs ⁴	PBS 100 mM	0.15	$E_{onset} = 0.197$
BP-NF ⁵	PBS 50 mM	0.1	$E_{onset} = 0.2$
N-Fe/Fe ₃ C@C ⁶	PBS 100 mM	0.5	Eonset = 0.21

Table S1. Comparison of ORR performance in literature

Source/Reference s	Electrolyte	Current density	Capacitance(F g ⁻¹)
Our work (NNCM- 900-70)	6 M KOH	1 A g ⁻¹ 8 A g ⁻¹	178 121
RGO ⁷	6 M KOH	1 A g ⁻¹	190
Graphene ⁸	5 M KOH	0.1 A g ⁻¹	155
r[GO-CNT] ⁹	1 M TEABF	4 1 A g ⁻¹	109.1
Graphene ¹⁰	0.5 M NaCl	0.6 A g ⁻¹	230
N-doped carbon fibers ¹¹	6 M KOH	1 A g ⁻¹	202
C0 ₃ O ₄ /r-GO ¹²	6 M KOH	1 A g ⁻¹	163.8

Table S2. Comparison of supercapacitor performance in our work and some references

Performance of gas storage

Considering the tunable pore size, heteroatom doping and high specific surface area in NNCMs, especially the NNCMs-1050-70, and the energy gas molecules, such as the hydrogen and acetylene, uptake were measured. Hydrogen adsorption isotherms of those carbon materials from 0-1 atm at 77 K by the volumetric method are shown in Figure S1. The hydrogen uptakes of NNCM-1050-70 were 1.74 wt% at 1 atm, which is comparable with best activated carbon (about 1.8 %) as reported previously.¹³ This excellent performance may be resulted from the synergetic effect of the high specific surface are, suitable pore size and the N-doping in the carbon nanomaterials. In practice, C_2H_2 gas is stored at ambient temperatures. The C_2H_2 adsorption experiment was carried out at room temperature (295 K) under 1 atm. The C₂H₂ adsorption amount for NNCM-1050-70 reaches up to 75 cm³(STP) g⁻¹ at 295 K and 1 atm, near to the highest record of pores space adsorption 113 cm³ (STP) g⁻¹.¹⁴ The tunable pore size, heteroatom doping and high specific surface area of the NNCMs may be responsible for C₂H₂ storage. In conclusion, the obtained NNCMs with hierarchical structure can be used as a potential candidate for the renewable energy gas storage.

Figure S1. (a) Hydrogen adsorption isotherms of NNCM-1050-70 from 0 to 1 atm at 77 K by the volumetric method. (b) C_2H_2 adsorption of NNCM-1050-70 from 0 to 1 atm at 295 K.

Reference for supporting information:

- 1. X. Yang, W. Zou, Y. Su, Y. Zhu, H. Jiang, J. Shen, and C. Li, *J. Power Sources*, 2014, 266, 36-42.
- 2. H. Dong, H. Yu and X. Wang, Environ. Sci. Technol., 2012, 46, 13009-13015.
- 3. V. J. Watson, C. N. Delgado, B. E. Logan, J. Power Sources, 2013, 242, 756-761.
- 4. Y. Su, H. Jiang. Y. Zhu, W. Zou, X. Yang, J. Chen, and C. Li, *J. Power Sources*, 2014, 265, 246-253.
- 5. K. Meng, Q. Liu, Y. Huang and Y. Wang, J. Mater. Chem. A, 2015, 3, 6873-6877.
- Z. Wen, S. Ci, F. Zhang, X. Feng, S. Cui, S. Mao, S. Luo, Z. He and J. Chen, *Adv. Mater.*, 2012, 24, 1399-1404.
- 7. Z. Lei, L. Lu and X. S. Zhao, *Energy Environ. Sci.*, 2012, 5, 6391–6399.
- 8. L. Jiayan, J. Hee Dong and H. Jiaxing, ACS Nano, 2013, 7, 1464–1471.
- N. Jung, S. Kwon, D. Lee, D. M. Yoon, Y. M. Park, A. Benayad, J. Y. Choi and J. S. Park, *Adv. Mater.*, 2013, 25, 6854–6858.
- H. Wang, D. Zhang, T. Yan, X. Wen, L. Shi and J. Zhang, *J. Mater. Chem.*, 2012, 22, 23745–23748.
- L. Chen, X. Zhang, H. Liang, M. Kong, Q. Guan, P. Chen, Z. Wu, and S. Yu, ACS Nano, 2012, 6, 7092–7102.
- 12. W. Zhou, J. Liu, T. Chen, K. S. Tan, X. Jia, Z. Luo, C. Cong, H. Yang, C. M. Li and T. Yu, Phys. *Chem. Chem. Phys.*, 2011, 13, 14462–14465.
- 13. H. Wang, Q. Gao and J. Hu, J. Am. Chem. Soc., 2009, 131, 7016-7022.
- 14. J. Pang, F. Jiang, M. Wu, C. Liu, K. Su, W. Lu, D. Yuan and M. Hong, *Nat. Commun.*, 2015, 6, 7575.