Supplementary Materials

Influence of copper addition for silicon-carbon composite as anode materials for lithium ion batteries

Yong Cheng, ac Zheng Yi, ab Chunli Wang, ac Lidong Wanga*, Yaoming Wua and Limin Wanga*

- ^a State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry,
- CAS, Changchun 130022, China
- ^b College of Materials Science and Engineering, Jilin University, Changchun 130025, China
- ^c University of Chinese Academy of Sciences, Beijing 100049, China
- *Corresponding author.

lmwang@ciac.ac.cn (L.M. Wang), Tel.: +86 431 85262447; fax: +86 431 85262836.

ldwang@ciac.ac.cn (L.D. Wang), Tel.: +86 431 85262592; fax: +86 431 85262836.

Fig. S1. Cycling performance of RF-derived carbon at the current density of 100 mA g⁻¹.

Fig. S2. Rate capability of Si-C/Cu2 at various current densities from 1 to 10 A g⁻¹.

Sample	Element Weight (%)	
S: C	Si	37.7
51-C	С	62.3
	Si	42.6
Si-C/Cu1	С	56
	Cu	1.4
	Si	46.4
Si-C/Cu2	С	51.4
	Cu	2.2
	Si	45
Si-C/Cu3	С	46.1
	Cu	8.9

Table S1 Element analysis of the prepared samples

Table S2 Electrochemical properties of the prepared samples

Sample	Current density (mA g ⁻¹)	Current density (mA cm ⁻²)	Discharge specific capacity of 1 st cycle (mAh cm ⁻²)	Charge specific capacity of 1 st cycle (mAh cm ⁻²)	Initial coulombic efficiency (%)	Discharge specific capacity of 100 th cycle (mAh cm ⁻²)
Si-C	100	0.12	1.27	0.5	39	0.465
Si-C/Cu1	100	0.118	1.589	0.726	46	0.709
Si-C/Cu2	100	0.115	2.569	1.341	52	1.089
Si-C/Cu3	100	0.116	2.139	1.167	55	0.834