Supporting Information

A novel displacement-type colorimetric chemosensor for the detection of Cu²⁺ and GSH in aqueous solution

Ga Rim You, Hyo Jung Jang, Tae Geun Jo, Cheal Kim*

Department of Fine Chemistry and Department of Interdisciplinary Bio IT Materials, Seoul National University of Science and Technology, Seoul 139-743, Korea. Fax: +82-2-973-9149; Tel: +82-2-970-6693; E-mail: <u>chealkim@seoultech.ac.kr</u>

Colorimetric chemosensor	Analyte	Sequence	Binding constant (M ⁻¹)	Detection limit (μM)	Reference
NC N	Cu	Cys	3.2 x 10 ⁴	2.4	[1]
of a for	Cu	CN	5.0 x 10 ³	29.5	[2]
HS S N HO N	Cu	CN	1.0 x 10 ¹⁰	0.9	[3]
	Cu	None	9.3 x 10 ⁴	0.087	[4]
	Cu	None	5.7 x 10 ⁸	0.0825	[5]
NC H ₂ HO N	Cu	None	2.3 x 10 ⁴	2.4	[6]
Q. po refecto	Cu	None	8.3 x 10 ⁴	0.217	[7]
Chin and to.	Cu	None	1.3 x 10 ³	0.26	[8]
	Cu	None	4.1 x 10 ⁴	59	[9]
	Cu	None	3.3 x 10 ⁶	1	[10]
	Cu	GSH	1.0 x 10 ⁴	3.89	This work

Table S1. Examples for the detection of Cu^{2+} by colorimetric chemosensors

References

- 1 S. A. Lee, J. J. Lee, J. W. Shin, K. S. Min and C. Kim, *Dye. Pigment.*, 2015, **116**, 131-138.
- 2 H. Y. Jo, G. J. Park, Y. J. Na, Y. W. Choi, G. R. You and C. Kim, *Dye. Pigment.*, 2014, **109**, 127-134.
- 3 G. R. You, G. J. Park, J. J. Lee and C. Kim, *Dalton Trans.*, 2015, 44, 9120-9129.
- 4 S. Hu, S. Zhang, Y. Hu, Q. Tao and A. Wu, *Dye. Pigment.*, 2013, **96**, 509-515.
- 5 S. Hu, J. Song, F. Zhao, X. Meng and G. Wu, *Sensors Actuators B Chem.*, 2015, **215**, 241-248.
- 6 T. G. Jo, Y. J. Na, J. J. Lee, M. M. Lee, S. Y. Lee and C. Kim, *Sensors Actuators, B Chem.*, 2015, **211**, 498-506.
- 7 J.-J. Xiong, P.-C. Huang, C.-Y. Zhang and F.-Y. Wu, *Sensors Actuators B Chem.*, 2016, **226**, 30-36.
- 8 S.-L. Kao, W.-Y. Lin, P. Venkatesan and S.-P. Wu, *Sensors Actuators B Chem.*, 2014, **204**, 688-693.
- 9 Y. Wang, C. Wang, S. Xue, Q. Liang, Z. Li and S. Xu, *RSC Adv.*, 2016, 6, 6540-6550.
- 10 A. Sen Gupta, K. Paul and V. Luxami, Inorg. Chim. Acta, 2016, 443, 57-63

Fig. S1 Absorption spectra of **1** (30 μ M) upon the addition of 5 equiv of various copper salts in DMF/bis-tris buffer (7/3; v/v. 10 mM bis-tris, pH = 7.0).

Fig S2. Job plot of 1 and Cu²⁺, where the intensity at 416 nm was plotted against the mole fraction of Cu²⁺. The total concentration of Cu²⁺ with receptor 1 was 3.0×10^{-5} M.

Fig. S3 Benesi-Hildebrand plot (at 416 nm) of 1 (30 μ M), assuming 1:1 stoichiometry for association between 1 and Cu²⁺.

Fig. S4 Determination of the detection limit of 1 (30 μ M) for Cu⁺ based on change of absorbance at 416 nm.

Fig. S5 (a) Absorption spectral changes of competitive selectivity of **1** (30 μ M) toward Cu²⁺ (5 equiv) in the presence of other metal ions (25 equiv) in DMF/bis-tris buffer (7/3, v/v). (b) The color changes of competitive selectivity of **1** (30 μ M) toward Cu²⁺ (5 equiv) in the presence of other metal ions (25 equiv).

Fig. S6 ¹H NMR titration of **1** with Cu²⁺.

Fig. S7 UV absorbance (at 416 nm) of **1** (30 μ M) and **1**-Cu²⁺ complex at different pH (2-12) in a mixture of DMF/bis-tris buffer (7/3, v/v), respectively.

Fig. S8 Absorption (at 416 nm) of **1** as a function of Cu^{2+} concentration. [**1**] = 30 μ mol/L and [Cu^{2+}] = 0-48.0 μ mol/L.

(b)

 Excited State	Wavelengt	Percent	Characte	Oscillator
1	h	(%)	r	strength
 $\mathrm{H} \to \mathrm{L}$	375.23 nm	97	ICT	1.1265

(c)

Fig. S9 (a) The theoretical excitation energies (TD-DFT method) and the experimental UV-vis spectrum of 1. (b) The major electronic transition energy and molecular orbital contribution for 1 (H = HOMO and L = LUMO). (c) Isosurface (0.030 electron bohr⁻³) of molecular orbitals participating in the major singlet excited state of 1.

(b)

Excited State 12	Wavelength	percent (%)	Character	Oscillator
Exclieu State 15				strength
$\mathrm{H}\left(\alpha\right)\rightarrow\mathrm{L}\left(\alpha\right)$	389.95 nm	40%	ICT	1.2418
$\mathrm{H}\left(\beta\right) \to \mathrm{L}{+1}\left(\beta\right)$		40%	ICT	
H-4 (β) \rightarrow L (β)		9%	LMCT	

(c)

Fig. S10 (a) The theoretical excitation energies and the experimental UV-vis spectrum of $1-Cu^{2+}$. (b) The major electronic transition energies and molecular orbital contributions for

1-Cu²⁺ (H = HOMO and L = LUMO / (α): α spin MO and (β): β spin MO). (c) Isosurface (0.030 electron bohr⁻³) of molecular orbitals participating in the major singlet excited states of **1-**Cu²⁺

HOMO-5 (-8.397 eV)

Fig. S11 Molecular orbital diagrams and excitation energies of 1 and 1-Cu²⁺ complex.

Fig. S12 Job plot of **1**-Cu²⁺ and GSH, where the intensity at 416 nm was plotted against the mole fraction of GSH. The total concentration of GSH with **1**-Cu²⁺ was 3.0×10^{-5} M.

Fig. S13 Positive-ion electrospray ionization mass spectrum of 1-Cu^{2+} (10 $\mu M)$ upon

addition of 3 equiv of GSH.

Fig. S14 Benesi-Hildebrand plot (at 416 nm) of 1-Cu²⁺ (30 μ M), assuming 1:1

stoichiometry for association between 1-Cu²⁺ and GSH.

Fig. S15 Determination of the detection limit of 1-Cu²⁺ (30 μ M) for GSH based on change of absorbance at 416 nm.

Fig. S16 UV absorbance (at 416 nm) of $1-Cu^{2+}$ (30 μ M) and $1-Cu^{2+}$ -GSH at different pH (2-12) in a mixture of DMF/bis-tris buffer (7/3, v/v), respectively.