This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information

Fabrication of ZnO Nanowires Array with Nanodiamond as Reductant

Xin Li ${ }^{\ddagger}$, Shuanglong Feng ${ }^{\ddagger}$, Shuangyi Liu, Zhenhu Li, Liang Wang, Zhaoyao Zhan, and Wenqiang Lu* Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, PR China
\# Contributed equally
* Corresponding author. Tel.: +86 236593 5639; fax: +86 236593 5000. E-mail address: wqlu@cigit.ac.cn.

Fig. S1. The schematic illustration of the chemical vapor deposition set-up for ZnO nanowire growth
(the mass of ZnO and diamond in this experiment were 0.21 g , and 0.07 g , respectively.)

Fig. S2. SEM images of obtained ZnO nanorods in $960^{\circ} \mathrm{C}$ reaction with different reactants (a) $\mathrm{ZnO}+$ graphite, (b)ZnO+100nm nanodiamond, (c)ZnO+10nm nanodiamond, and (d) SEM image of obtained ZnO nanorods in $600^{\circ} \mathrm{C}$ reaction with $\mathrm{ZnO}+10 \mathrm{~nm}$ nanodiamond without Au catalyst.

Fig. S3. The (a) optical and (b) low magnification SEM images of obtained ZnO nanorods in $600^{\circ} \mathrm{C}$ reaction for 8 hours.

Fig. S4. The nitrogen adsorption-desorption isotherms of different allotropes of carbon

Calculation of Debye characteristic temperature of $\mathbf{1 0} \mathbf{n m}$ and 100 nm nanodiamond

The Debye characteristic temperature of 10 nm and 100 nm nanodiamond was calculated based on X-ray diffraction intensities by the methods introduced by X.S. Lu ${ }^{1}$.

Lu's method can be described as follows:
In the X-ray diffraction, the natural logarithm of the ratio of the calculated intensities to the observed intensities $\ln \left(I_{c a l c} / I_{o b s}\right)$ should have the linear relationship with $\sin ^{2} \theta / \lambda^{2}$. The slope should be 2B. In Debye theory of specific heat, B can be expressed as

$$
B=\left(6 h^{2} T / M k \Theta_{D}^{2}\right)[\Phi(x)+x / 4]
$$

Of which, $x=\Theta_{D} / T$.
If we assumed $G=B M k T / 6 h^{2}, \Phi(x)+x / 4=G x^{2}$. If we got the value of B from the X -ray diffraction data,
the G can be calculated. Then x can be determined by the graphic method. If we let $y_{1}=G x, y_{2}=\Phi(x)+x / 4$, two curves can be obtained in the coordinate graph. The intersection of the two curves is the x value. Finally, Debye characteristic temperature can be calculated with the obtained x value.

Fig. 55 The XRD diffraction pattern of 10 nm diamond and 100 nm diamond.

The X-ray diffraction results were shown in table S1.
Table S1. The raw data and calculation results

hkl		Θ / C	f	$\|F\|^{2}$	J	P	$I_{\text {calc }}$	$I_{\text {obs }}$	$\ln \left(I_{\text {calc }} / I_{\text {obs }}\right)$
111	10nm	43.398	3.125	312.5	8.178	8	20425	3587	0.755
	100nm	43.822	3.125	312.5	8.178	8	20425	50674	-0.395
220	10nm	75.090	2.028	263.2	2.815	12	8891.5	537	1.219
	100nm	75.228	2.028	263.2	2.815	12	8891.5	9512	-0.293

(1) X-ray atomic scattering factor f (to $\sin \theta / \lambda \AA^{-1}$), can be calculated after looking up the table ${ }^{2}$.
(2) The structure factor is calculated by the following equation ${ }^{2}$,

$$
|F|^{2}=F F^{*}=\left|\sum_{m} f_{m} \exp \left[-2 \pi i r_{m} 0 G\right]\right||F|^{2}
$$

For diamond cell, $m=8$, there are 8 atoms in the unit cell. The position coordinates are 000, $\frac{1}{2} \frac{1}{2} 0,0 \frac{1}{2} \frac{1}{2}, \frac{1}{2} 0$ $\frac{1}{2}, \frac{1}{4} \frac{1}{4} \frac{1}{4}, \frac{3}{4} \frac{3}{4} \frac{1}{4}, \frac{1}{4} \frac{3}{4} \frac{3}{4}, \frac{3}{4} \frac{1}{4} \frac{3}{4}$. Therefore, the calculation results should be $\left|F_{(111)}\right|^{2}=32 f_{(111)}^{2}$, $\left|F_{(220)}\right|^{2}=64 f_{(220)}^{2}$.
(3) The expression of the angular factor J is

$$
J=\left(1+\cos ^{2} 2 \theta_{B}\right) /\left(\sin ^{2} \theta_{B} \cdot \cos \theta_{B}\right)
$$

The value can be calculated by above equation as well as looking up the table ${ }^{1}$.
(4) The multiplicity factor P can be found in the table through the crystal surface index (hkl).
(5) The calculation intensities $\mathrm{I}_{\text {calc }}{ }^{2}$ can be calculated as

$$
I_{\text {calc }}=K N_{0}^{2} V F F^{*}
$$

In which, K is a scaling factor; $N_{0}^{2} V$ is the number of unit cells that can produce diffraction.
The calculated values of the above quantities are shown in table S1.
From the linear relationship between $\ln \left(I_{\text {calc }} / I_{\text {obs }}\right)$ and $\sin ^{2} \theta / \lambda^{2}$, в can be calculated. Then, G can be calculated with the constant parameters (atom mass $1.66053 \times 10^{-24} \mathrm{~g}, k=1.38062 \times 10^{-23} \mathrm{~J} \cdot \mathrm{~K}$ $\left.h=6.62620 \times 10^{-34} J \cdot s\right)$. After G was obtained, x can be determined by the graphic method. As we know $\Theta_{D}=x \cdot T$, the Debye characteristic temperature can be calculated.

Table S2. The Debye temperature of nanodiamond and graphite

Average diameter	$\mathrm{B} / \mathrm{nm}^{2}$	$\mathrm{~T} / \mathrm{C}$	G	x	Θ_{D} / K
10 nm	0.03698	20	0.95868	1.002	304
100 nm	0.008219	20	0.213	2.166	646

Fig. S6 The SEM images of ZnO nanostructures obtained in (a) Si , (b) SiO_{2}, and (c) FTO substrates

REFERENCES

1. P. W. Chen, S. R. Yun, F. L. Huang, Y. S. Ding and Q. Chen, Chinese J of High Pressure Phys, 2001, 15, 32-38.
2. B. D. Cullity and J. W. Weymouth, Elements of x-ray diffraction, Addison-Wesley Pub. Co.
