Supporting Information

Synthesis of MoP decorated carbon cloth as a binder-free electrode for hydrogen evolution

Chen Deng, & Jiangzhou Xie, & Yifei Xue, Meng He, Xiaotong Wei and Yi-Ming Yan*

School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing, 100081, People's Republic of China

*Corresponding Author.

&These authors have the same contribution to this work.

Email: bityanyiming@163.com

Tel (Fax): +86-10-68918891

Fig. S1 (a) (b) SEM images of molybdenum phosphide microspheres (MoP-MS) at different magnification.

Fig. S2 Nitrogen adsorption/desorption isotherm plots and the BJH pore–size distribution curves of (a) (b) MoP-HS@CC, (c) (d) MoP-MS and (e) (f) CC.

Table S1 The details of the BET results of MoP-HS@CC, MoP-MS and CC

	Surface areas /m ²	Pore Volume / cc/g	Average pore sizes /nm
MoP-HS@CC	48.98	0.0726	5.93
MoP-MS	25.81	0.0677	10.50
CC	5.09	0.0310	24.36

Fig. S3 XRD patterns of 3D MoP-HS@CC, MoP-MS and CC.

Fig. S4 EDS elemental mappings of Mo, P and C at the surface of MoP-HS@CC.

Fig. S5 (a) (b) SEM images of MoP-MS/CC at different magnification.

Fig. S6 Polarization curves of MoP-HS@CC that electrochemically activated at different cycles in 0.5 M H_2SO_4 at a scan rate of 100 mV s⁻¹.

Fig. S7 Exchange current densities for different catalysts extracted from Tafel plots.

Catalyst	Tafel slope	Current	η at the	Exchange	Reference
	(mV/dec)	density	corresponding j	current density	
		j (mA cm-2)	(mV)	(mA cm-2)	
netallic MoS ₂ nanosheets	54	10	195	-	[1]
MoS ₂ /graphene/Ni foam	42.8	10	141	-	[2]
MoP	54	30	180	3.4×10-2	[3]
MoP	60	10	246	4.15×10-3	[4]
MoP network	54	10	125	8.6×10-2	[5]
amorphous MoP NPs	45	10	90	1.2×10-1	[6]
WP/CC	69	10	130	0.29	[7]
WP ₂ SMP	57	10	161	0.017	[8]
CoP/CNT	54	10	122	0.13	[9]
CoP nanotubes	60	10	144	-	[10]
CoP/CC	51	10	67	0.288	[11]
CoP/Ti	43	10	90	-	[12]
FeP NAs/Ti	60	10	85	-	[13]
NiP ₂ NS/CC	51	10	75	0.26	[14]
MoSe ₂	69	10	182	0.021	[15]
MoP-graphite	63	30	300	6.367×10-2	[16]
MoP nanosheets /CF	56.4	10.1	200	-	[17]
MoP-HS@CC		10	87		
	61	20	112	0.438	This work
		100	195		
MoP-MS/CC	92	10	147	0.169	This work

Table S2 Comparison of HER performance of MoP-HS@CC with other reported Mo-based or TMPs HER electrocatalysts in acidic media.

Fig. S8 The chronocoulometry plots for the electrodes in mixed solution of $0.1 \text{ mM K}_3[\text{Fe}(\text{CN})_6]$ and 0.1 M KC at room temperature.

Fig. S9 The Nyquist plots of MoP-HS@CC and MoP-MS/CC recorded in 0.5 M H_2SO_4 solution at the potential of 100 mV.

Table S3 Comparison of HER performance of 3D MoP-HS@CC with other reported non-noble metal
HER electrocatalysts in basic media.

Catalyst	Tafel slope (mV/dec)	Current density	η at the	Reference
	(in (face)	<i>j</i> (mA cm ⁻²)	(mV)	
Co-NRCNTs	-	10	370	[18]
MoP	48	10	130	[3]
bulk MoB	59	10	225	[19]
WP/CC	102	10	150	[7]
WP ₂ SMP	60	10	153	[8]
Ni ₂ P nanoparticles	100	20	250	[20]
CoP/CC	129	10	209	[11]
11FeP NAs/CC	146	10	218	[21]
NiP ₂ NS/CC	64	10	102	[14]
MoP-HS@CC	64	10	121	This work
		100	223	

Fig. S10 SEM images of MoP-HS@CC before and after long-term stability test

Fig. S11 XRD pattern of MoP-HS@CC before and after long-term stability test

Fig. S12 The GC chromatograph of H_2 gas production obtained with MoP-HS@CC under electrolysis at - 0.2 V (vs. RHE) for 1h. The inset shows the volume of hydrogen and the testing time.

Supplementary Movie

Movie S1 This movie shows the dynamic hydrogen production process at MoP@CC operated from +0.1 V to -0.3 V vs. RHE.

References:

- M. A. Lukowski, A. S. Daniel, F. Meng, A. Forticaux, L. Li and S. Jin, *J. Am. Chem. Soc.*, 2013, 135, 10274-10277.
- 2 Y. H. Chang, C. T. Lin, T. Y. Chen, C. L. Hsu, Y. H. Lee, W. Zhang, K. H. Wei and L.J. Li, *Adv. Mater.*, 2013, **25**, 756-760.

3 P. Xiao, M. A. Sk, L. Thia, X. Ge, R. J. Lim, J. Y. Wang, K. H. Lima and X. Wang, *Energy Environ. Sci.*,

2014, 7, 2624-2629.

- 4 X. Chen, D. Wang, Z. Wang, P. Zhou, Z. Wu and F. Jiang, Chem. Commun., 2014, 50, 11683-11685.
- 5 Z. Xing, Q. Liu, A. M. Asiri and X. Sun, Adv. Mater., 2014, 26, 5702-5707.
- 6 J. M. McEnaney, J. C. Crompton, J. F. Callejas, E. J. Popczun, A. J. Biacchi, N. S. Lewis and R. E. Schaak, *Chem. Mater.*, 2014, 26, 4826-4831.
- 7 Z. Pu, Q. Liu, A. M. Asiri and X. Sun, ACS Appl. Mater. Interfaces, 2014, 6, 21874-21879.
- 8 Z. Xing, Q. Liu, A. M. Asiri and X. Sun, ACS Catal., 2015, 5, 145-149.
- 9 Q. Liu, J. Tian, W. Cui, P. Jiang, N. Cheng, A. M. Asiri and X. Sun, Angew. Chem. Int. Ed., 2014, 53, 6710–6714.
- 10 H. Du, Q. Liu, N. Cheng, A. M. Asiri, X. Sun and C. M. Li, J. Mater. Chem. A, 2014, 2, 14812–14816.
- 11 J. Tian, Q. Liu, A. M. Asiri and X. Sun, J. Am. Chem. Soc., 2014, 136, 7587-7590.
- 12 Z. Pu, Q. Liu, P. Jiang, A. M. Asiri, A. Y. Obaid and X. Sun, Chem. Mater., 2014, 26, 4326-4329.
- 13 R. Liu, S. Gu, H.Du and C. M. Li, J. Mater. Chem. A, 2014, 2, 17263-17267.
- 14 P. Jiang, Q. Liu and X. Sun, Nanoscale, 2014, 6, 13440-13445.
- 15 B. Qu, X. Yu, Y. Chen, C. Zhu, C. Li, Z. Yin and X. Zhang, ACS Appl. Mater. Interfaces, 2015, 7, 14170–14175.
- 16 S. S. J. Aravind, K. Ramanujachary, A. Mugweru and T. D. Vadenet, *Applied Cat. A: General*, 2015, **490**, 101-107.
- 17 W. Cui, Q. Liu, Z. Xing, A. M. Asiri, K. A. Alamry and X. Sun, *Applied Catalysis B: Environmental*, 2015, **164**, 144-150.
- 18 Z. Xiaoxin, H. Xiaoxi, G. Anandarup, S. Rafael, B. R. Sathe and M. Eli?Ka, Angew. Chem. Int. Ed., 2014, 53, 4372 –4376.
- 19 H. Vrubel and X. Hu, Angew. Chem. Int. Ed., 2012, 51, 12703-12706.
- 20 L. Feng, H. Vrubel, M. Bensimon and X. Hu, Phys. Chem. Chem. Phys., 2014, 16, 5917-5921.
- 21 Y. Liang, Q. Liu, A. M. Asiri, X. Sun and Y. Luo, ACS Catal., 2014, 4, 4065–4069.