Electronic Supplementary Information for: Solvothermal synthesized LiMn_{1-x}Fe_xPO₄@C nanopowders with excellent high rate and low temperature performances for lithium-ion batteries

Bangkun Zou^a, Ran Yu^a, Miaomiao Deng^{a,b}, Yuting Zhou^a, Jiaying Liao^a, Chunhua

Chen^{a,*}

- a. CAS Key Laboratory of Materials for Energy Conversions, Department of Materials Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Anhui Hefei 230026, China
- b. School of Chemistry and Chemical Engineering, HeFei University of Technology, Anhui Hefei 230009, China

Corresponding authors: E-mail: <u>cchchen@ustc.edu.cn</u>; Phone: +86-551-63606971; Fax: (+86)551-63601592.

Fig. S1 The N₂-adsorption/desorption curves (a-b), and pore size distributions (c-d) of samples D8- and D15-Li $Mn_{0.5}Fe_{0.5}PO_4$.

Fig. S2 The discharge curves of D15-LiMn_{0.8}Fe_{0.2}PO₄ (a) and D15-LiMn_{0.5}Fe_{0.5}PO₄ (b) at different current densities.

Fig. S3 The SEM image of D0-LiFePO₄.

Fig. S4 The electrochemical performance of D0-LiFePO₄.

Fig. S5 The initial charge-discharge curve of D8-LiFePO₄ (a) and discharge curves of samples D8-LiMn_{1-x}Fe_xPO₄ (x=0, 0.2, 0.5, 1) (b) at 0.1C.