Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supporting information

Functionalised dihydroazo pyrimidine derivatives from Morita-Baylis-Hillman Acetates: Synthesis and studies against Acetylcholinesterase inhibitors.

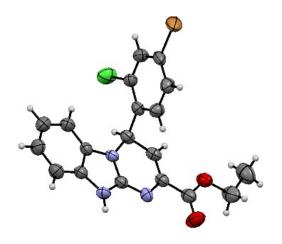
Koti Reddy Eeda ^a, Remya Chandran ^b, Ayyiliah M Sajith ^c, Dileep KV ^d, C Sadasivan ^b, Shaik Anwar ^a,*

^a Division of Chemistry, Department of Science and Humanities, Vignan's Foundation for Science, Technology and Research University-VFSTRU (Vignan University), Vadlamudi, Guntur, 522 213, Andrapradesh, India.

shaikanwarcu@gmail.com

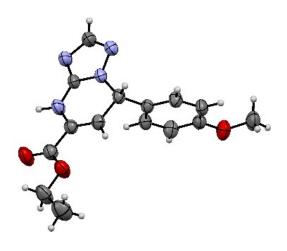
Table of contents

1.	X-ray crystal structure for compound 3e and 4b	2
2.	General information and general procedure	3
3.	Data for all newly synthesised compounds	4 – 17
4.	Figure 1 & 2	18
5.	Figure 3	19
6.	Biology data	20- 27
7.	Spectral data (¹ H NMR and ¹³ C NMR) for all newly synthesised compounds	28 - 54


^b Department of Biotechnology and Microbiology and inter-university centre for Bioscience, Kannur University,

Thalassery, Kerala, India.

^c Post Graduate and Research Department of Chemistry, Kasargod Govt. College, Kannur university, Kasaragod, India.


^d School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Computer Science Building, College of Engineering, Trivandrum Campus, Trivandrum-695016, Kerala, India.

X-ray Crystallographic data

Compound 3e

CCDC Number: 1446736

Compound 4b

CCDC Number: 1456725

General information

Morita-Baylis-Hillman Acetates of nitroalkenes 1 were synthesized according to literature. All experiments were performed under nitrogen atmosphere. All solvents and reagents are procured from commercially available sources like Aldrich, Alfa-aser, spectrochem. Commercially available pre packed silica gel (230-400 mesh) plugs, hexane and ethyl acetate solvents were used for column chromatographic purification. Isolated yields correspond to products of greater > 90% purity as determined by LC-MS and NMR. All NMR (¹H, ¹³C) chemical shifts are reported in parts per million (ppm), all coupling constants are reported in Hertz (Hz) and tetramethylsilane used as internal standard for ¹H NMR. Liquid chromatography- mass spectrometry (LC-MS) was used for reaction monitoring and identification for product mass.

Experimental procedure for synthesis of compound (3a-3l):

To a solution of 2-aminobenzimidazole (0.15 mmol) in acetonitrile (1.0 mL) was mixed with MBH Acetate of nitro alkene (0.18 mmol) followed by the addition of cesium carbonate (0.3 mmol) and the reaction mixture was stirred for 12h at RT. After completion of reaction (monitored by LCMS), the reaction mixture was quenched with water (5 mL). The reaction mixture was extracted with ethyl acetate (3x 10 mL). The combined organic layers were dried over anhydrous sodium sulphate, filtered and concentrated. To this crude product was added methanol (4 mL) and stirred for 30 min at RT. A white precipitate was obtained which was filtered gave the product (60% - 82%). The mother liquid contains a small amount of product by LCMS.

Ethyl 4-phenyl-4,10-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-2-carboxylate (3a):

N NH O O

White solid; yield 46 mg, 82%; MP: 145-147 °C; ¹H NMR (400 MHz, Chloroform-*d*): δ 7.55 (dd, J = 7.9, 3.0 Hz, 1H), 7.39 - 7.28 (m, 5H), 7.17-7.13(m, 1H), 6.97-6.93(m, 1H), 6.79-6.77 (m, 1H), 6.19 (d, J = 4.0 Hz, 1H), 5.99 (d, J = 4.0 Hz, 1H), 4.38-4.30 (dq, J = 7.2 Hz, 4.8Hz, 2.0Hz, 2H), 1.35 (t, J = 7.4 Hz, 3H). ¹³C NMR (75 MHz, Chloroform-*d*) δ 162.39, 144.42, 143.65, 137.79, 133.55, 129.53, 129.07, 128.19, 126.39, 122.96, 122.39, 122.19, 118.64, 109.97, 62.75, 59.28, 14.10. LCMS: m/z calculated for $C_{19}H_{17}N_3O_2$: 319.13; Observed mass: 320.2 (M+1); Anal. Calculated for $C_{19}H_{17}N_3O_2$: C, 71.46; H, 5.37; N, 13.16. Found: C, 71.44; H, 5.35; N, 13.18.

Ethyl-4-(4-bromophenyl)-4,10-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-2-carboxylate (3b):

N NH O O

Pale brown solid; yield 57 mg, 80%; MP: 151-153 °C; ¹H NMR (400 MHz, Chloroform-*d*): δ 7.57 (d, J = 8.0 Hz, 1H), 7.51 (d, J = 1.8 Hz, 1H), 7.50 (d, J = 1.9 Hz, 1H), 7.21 – 7.14 (m, 3H), 6.99-6.95 (m, 1H), 6.75 (d, J = 8.0 Hz, 1H), 6.17 (d, J = 4.0 Hz, 1H). 5.92 (d, J = 4.0 Hz, 1H), 4.35 (qq, J = 7.3, 3.7 Hz, 2H), 1.34 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, Chloroform-*d*) δ 161.71, 146.59, 142.04, 138.62, 132.44, 132.04, 131.51, 128.11, 126.17, 122.70, 122.52, 120.67, 117.21, 109.41, 105.84, 62.36, 57.40, 14.07. LCMS: m/z calculated for $C_{19}H_{16}BrN_3O_2$: 397.04; Observed mass: 398.2, 400.2 (M+1, M+3); Anal. Calculated for $C_{19}H_{16}BrN_3O_2$: C, 57.30; H, 4.05; N, 10.55;. Found: C, 57.31; H, 4.07; N, 10.54.

Ethyl-4-(p-tolyl)-4,10-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-2-carboxylate (3c):

White solid; yield 46 mg, 77%; MP: 143-145 °C; ¹H NMR (400 MHz, DMSO-*d6*) δ (ppm) 7.93 (d, J = 6.56 Hz, 2H), 7.84–7.81 (m, 2H), 7.61-7.56 (m, 2H), 7.34-7.29 (m, 2H), 6.57 (d, J = 4.0 Hz, 1H), 6.16 (d, J = 4.0 Hz, 1H), 4.17 (q, J = 6.8 Hz, 2H), 2.11 (s, 3H), 1.23 (t, J = 6.8 Hz, 3H). ¹³C NMR δ (ppm) 161.94, 148.24, 144.41, 143.67, 133.13, 127.23, 126.11, 124.90, 123.99, 123.49, 122.88, 119.06, 63.05, 58.43, 23.08, 14.08. **LCMS:** m/z calculated for $C_{20}H_{19}N_3O_2$: 333.15; Observed mass: 334.2 (M+1). Anal. Calculated for $C_{20}H_{19}N_3O_2$: C, 72.05; H, 5.74; N, 12.60; Found: C, 72.07; H, 5.75; N, 12.64

Ethyl-4-(5-bromo-2-fluorophenyl)-4,10-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-2-carboxylate (3d):

N NH Br O O

Yellow solid; yield 46 mg, 68%; MP: 150-152 °C; ¹H NMR (300 MHz, DMSO-*d6*): δ 10.15 (bs, 1H), 7.79 (s, 1H), 7.54 (dd, J – 8.2, 2.2 Hz, 1H), 7.37 (d, J = 7.7 Hz, 1H), 7.08-7.03 (m, 2H), 6.90 (t, J = 7.6 Hz, 1H), 6.73-6.70 (m, 2H), 5.83 (d, J = 3.9 Hz, 1H), 4.25 (q, J = 7.0 Hz, 2H), 1.28 (t, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, DMSO) δ 166.89, 161.63, 153.30, 150.78, 142.39, 131.47, 131.41, 130.59, 127.97, 125.85, 125.56, 123.80, 123.76, 121.28, 121.24, 118.20, 106.17, 62.18, 59.24, 14.31. LCMS: m/z calculated for $C_{19}H_{15}BrFN_3O_2$: 415.03; Observed mass: 416.2, 418.2 (M+1, M+3); Anal. Calculated for $C_{19}H_{15}BrFN_3O_2$: C, 54.82; H, 3.63; N, 10.10; Found: C, 54.83; H, 3.65; N, 10.12.

Ethyl-4-(4-bromo-2-chlorophenyl)-4,10-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-2-carboxylate (3e):

N NH O O O

White solid; yield 54 mg, 70%; MP: 153-155 °C; ¹H NMR (400 MHz, Chloroform-d): δ 7.65 (d, J = 1.6 Hz, 1H), 7.55 (d, J = 8.0 Hz, 1H), 7.31 (dd, J = 8.4, 1.6 Hz, 1H), 7.20 (t, 7.2 Hz, 1H), 7.02 (t, J = 8.0 Hz, 1H), 6.85 (d, J = 8.0 Hz, 1H), 6.77 (d, J = 8.0 Hz, 1H), 6.67 (d, J = 4.0 Hz, 1H), 6.01 (d, J = 4.0 Hz, 1H), 4.36 (qq, J = 7.2 Hz, 2H), 1.37 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, Chloroform-d) δ 161.47, 135.37, 132.69, 131.32, 129.56, 126.72, 122.93, 122.81, 121.13, 117.19, 109.15, 103.84, 62.52, 50.80, 14.07. LCMS: m/z calculated for C₁₉H₁₅BrClN₃O₂: 431.00; Observed mass: 431.2, 433.2 (M+1, M+3); Anal. Calculated for C₁₉H₁₅BrClN₃O₂: C, 52.74; H, 3.49; N, 9.71; Found: C, 52.76; H, 3.50; N, 9.73.

Ethyl-4-(pyridin-2-yl)-4,10-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-2-carboxylate (3f):

N NH O O

White solid; yield 40 mg, 70%; MP: 155-156 °C; ¹H NMR (300 MHz, DMSO-*d6*): δ 7.73-7.61 (m, 4H), 7.48 (d, J = 7.8 Hz, 1H), 7.10-7.06 (m, 2H), 6.85-6.81 (m, 1H), 6.46 (d, J = 3.9 Hz, 1H), 5.86 (d, J = 3.9 Hz, 1H), 4.25 (qq, J = 7.2, 3.6 Hz, 2H), 1.25 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, DMSO) δ 166.88, 161.51, 153.29, 150.95, 150.65, 140.81, 139.03, 136.16, 131.40, 128.88, 125.86, 124.63, 121.25, 121.30 118.20, 103.72, 62.26, 59.34, 14.33. **LCMS:** m/z calculated for $C_{18}H_{16}N_4O_2$: 320.13; Observed mass:

321.2 (M+1). Anal. Calculated for $C_{18}H_{16}N_4O_2$: C, 67.49; H, 5.03; N, 17.49; Found: C, 67.51; H, 5.03; N, 17.48.

Ethyl-4-(5-bromo-2-fluoropyridin-3-yl)-4,10-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-2-carboxylate (3g):

Brown solid; yield 50 mg, 67%; MP: 162-164 °C; ¹H NMR (300 MHz, Chloroform-*d*): 8.35 (s, 1H), 7.81 (s, 1H), 7.62-7.55 (m, 2H), 7.35-7.25 (m, 2H), 6.67 (d, J= 3.9 Hz, 1H), 6.02 (d, J= 3.9 Hz, 1H), 4.36 (q, J= 7.2 Hz, 2H), 1.36 (t, J= 7.2 Hz, 3H).). ¹³C NMR (75 MHz, Chloroform-*d*) δ 162.32, 143.99, 143.68, 140.10, 133.40, 127.46, 127.22, 126.80, 126.16, 123.40, 123.10, 122.48, 118.79, 109.70, 62.82, 53.92, 14.11. LCMS: *m/z* calculated for C₁₈H₁₄BrFN₄O₂: 416.03; Observed mass: 417.2, 419.2 (M+1, M+3); Anal. Calculated for C₁₈H₁₄BrFN₄O₂: C, 51.82; H, 3.38; N, 13.43; Found: C, 51.83; H, 3.40; N, 13.46.

Ethyl-4-(3-hydroxyphenyl)-4,10-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-2-carboxylate (3h):

N NH O O

Colour less gummy nature; yield 44 mg, 73%; MP: 134-137 °C; **¹H NMR** (400 MHz, Chloroform-*d*): δ 7.88 – 7.86 (m, 1H), 7.78 (dd, J = 8.8, 2.4 Hz, 2H), 7.69-7.66 (m, 2H), 7.18 (dd, J = 8.8, 2.4 Hz, 1H), 7.15 (d, J = 2.4 Hz, 1H), 6.73 (d, J = 4.0 Hz, 1H), 6.39 (d, J = 4.0 Hz, 1H), 5.88 (bs, 1H), 4.18 (q, J = 7.2 Hz, 2H), 1.31 (t, J = 7.2 Hz, 3H). **¹³C NMR** (101 MHz, CDCl₃) δ 161.48, 151.75, 150.36, 139.70, 133.37, 131.35, 131.05, 129.22, 127.78, 126.54, 126.03, 122.34, 120.94, 119.11, 104.86, 62.52, 59.58, 14.12. **LCMS**:

m/z calculated for $C_{19}H_{17}N_3O_3$: 335.13; Observed mass: 336.2 (M+1); Anal. Calculated for $C_{19}H_{17}N_3O_3$: C, 68.05; H, 5.11; N, 12.53; Found: C, 68.07; H, 5.13; N, 12.55.

Ethyl-4-(2-fluorophenyl)-4,10-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-2-carboxylate (3i):

N NH O F O

Pale yellow solid; yield 36 mg, 60%; MP: 141-143 °C; ¹H NMR (400 MHz, Chloroform-d): δ 8.74 (dd, J = 7.2, 2.4 Hz, 1H), 8.27 (s, 1H), 7.90 (m, 1H), 7.82 - 7.79 (m, 2H), 7.56 – 7.49 (m, 1H), 7.48 – 7.43 (m, 2H), 7.38 (d, J = 4.0 Hz, 1H), 6.55 (d, J = 4.0 Hz, 1H), 4.54 (q, J = 7.2 Hz, 2H), 1.48 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 162.47, 160.06, 144.40, 143.60, 133.54, 129.81, 128.50, 127.76, 122.92, 122.33, 121.74, 118.58, 114.83, 110.04, 62.72, 58.73, 14.11. LCMS: m/z calculated for $C_{19}H_{16}FN_3O_2$: 337.12; Observed mass: 338.2 (M+1); Anal. Calculated for $C_{19}H_{16}FN_3O_2$: C, 67.65; H, 4.78; N, 12.46; Found: C, 67.65; H, 4.76; N, 12.45.

Ethyl-4-(2-nitrophenyl)-1,4-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-2-carboxylate (3j):

N NH O NO₂

white solid; yield 33 mg, 51%; MP: 150-153 °C; ¹H NMR (400 MHz, Chloroform-*d*): δ 8.13 (dd, J = 7.2 Hz, 2.0 Hz, 1H), 7.57-7.48 (m, 3H), 7.18 (dt, J = 7.2 Hz, 1H), 7.03 (dd, J = 7.2 Hz, 2.0 Hz, 1H), 6.99-6.97 (m, 1H), 6.95 (d, J = 4.0 Hz, 1H), 6.64 (d, J = 8.0 Hz, 1H), 6.27 (d, J = 4.0 Hz, 1H), 4.38 (dq, J = 7.2Hz, 2H), 1.37 (t, J = 7.2 Hz,

3H). ¹³C **NMR** (75 MHz, CDCl₃) δ 161.78, 156.28, 148.83, 140.06, 134.69, 129.78, 129.16, 127.69, 127.24, 124.47, 121.53, 119.41, 114.12, 111.95, 61.94, 58.09, 14.24. **LCMS:** m/z calculated for $C_{19}H_{16}N_4O_4$: 364.12; Observed mass: 365.2 (M+1); Anal. Calculated for $C_{19}H_{16}N_4O_4$: C, 62.63; H, 4.43; N, 15.38; Found: C, 62.65; H, 4.44; N, 15.40.

Ethyl-4-(3-(trifluoromethyl)phenyl)-1,4-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-2-carboxylate (3k):

white powder; yield 50 mg, 72%; MP: 140-142 °C; ¹H NMR (300 MHz, Chloroform-d): δ 7.61-7.50 (m, 4H), 7.32 (m, 2H), 7.14 (m, 2H), 6.29 (d, J = 3.9 Hz, 1H), 5.90 (d, J = 3.9 Hz, 1H), 4.36 (q, J = 7.2 Hz, 2H), 1.34 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.04, 161.61, 151.97, 150.24, 148.71, 138.70, 132.69, 132.22, 131.51, 128.85, 128.47, 127.53, 125.99, 123.03, 122.31, 120.90, 119.22, 105.49, 62.37, 60.03, 14.13. LCMS: m/z calculated for $C_{20}H_{16}F_3N_3O_2$: 387.12; Observed mass: 388.2 (M+1); Anal. Calculated for $C_{20}H_{16}F_3N_3O_2$: C, 62.01; H, 4.16; N, 10.85; Found: C, 62.03; H, 4.17; N, 10.87.

Ethyl-4-(4-methoxyphenyl)-1,4-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-2-carboxylate (3l):

N NH O O

White solid; yield 47 mg, 75%; MP: 146-147 °C; ¹H NMR (400 MHz, Chloroform-*d*): δ 9.68 (bs, 1H), 7.61-7.56 (m, 2H), 7.35-7.31 (m, 1H), 7.26 (d, J = 8.4 Hz, 2H), 7.16-7.12 (m, 1H), 6.91 (d, J = 8.4 Hz, 2H), 6.17 (d, J = 4.0 Hz, 1H), 5.93 (d, J = 4.0 Hz, 1H), 4.41-4.29 (m, 2H), 3.80 (s, 3H), 1.35 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 161.82, 160.01, 150.06, 148.62, 132.03, 131.57, 128.54, 127.18, 125.97, 122.29,

120.88, 119.27, 114.40, 106.45, 62.19, 60.05, 55.33, 14.14. **LCMS:** m/z calculated for $C_{20}H_{19}N_3O_3$: 349.14; Observed mass: 350.2 (M+1); Anal. Calculated for $C_{20}H_{19}N_3O_3$: C, 68.75; H, 5.48; N, 12.03; Found: C, 68.77; H, 5.49; N, 12.05.

Ethyl-5-phenyl-5,8-dihydroimidazo[1,2-a]pyrimidine-7-carboxylate (3m):

Colourless solid; yield 30 mg, 62%; MP: 162-164 °C; ¹H NMR (400 MHz, Chloroform-d): δ 7.43-7.25 (m, 5H), 7.15 (dd, J = 3.9 Hz, 8.4 Hz, 1H), 6.53 (d, J = 3.6 Hz, 1H), 6.21 (dd, J = 3.9 Hz, 8.4 Hz, 1H), 5.92 (dd, J = 3.9 Hz, 8.4 Hz, 1H), 4.36 (dq, J = 7.2 Hz, 3.6 Hz, 2H), 1.35 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 161.78, 148.83, 140.06, 134.69, 129.78, 129.16, 127.69, 127.24, 124.47, 121.53, 119.41, 111.95, 61.94, 58.09, 14.24. LCMS: m/z calculated for C₁₅H₁₅N₃O₂: 269.12; Observed mass: 270.2 (M+1); Anal. Calculated for C₁₅H₁₅N₃O₂: C, 66.90; H, 5.61; N, 15.60; Found: C, 66.92; H, 5.60; N, 15.62.

Ethyl-5-(4-bromophenyl)-5,8-dihydroimidazo[1,2-a]pyrimidine-7-carboxylate (3n):

Pale brown solid; yield 41 mg, 66%; MP: 169-172 °C; ¹H NMR (400 MHz, Chloroform-*d*): δ 10.25 (bs, 1H), 7.46 (d, J = 8.0 Hz, 2H), 7.38 (d, J = 1.6 Hz, 2H), 7.16-7.11 (m, 1H), 6.54 (d, J = 3.6 Hz, 1H), 6.16 (d, J = 4.0 Hz, 1H), 5.85 (d, J = 4.0

Hz, 1H), 4.36 (dq, J = 7.2 Hz, 3.6 Hz, 2H), 1.36 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz,

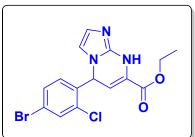
DMSO) δ 161.67, 150.63, 149.25, 140.47, 132.20, 129.49, 127.73, 121.94, 114.08, 106.46, 62.15, 59.11, 14.34. **LCMS**: m/z calculated for $C_{15}H_{14}BrN_3O_2$: 347.03; Observed mass: 348.2, 350.2 (M+1, M+3); Anal. Calculated for $C_{15}H_{14}BrN_3O_2$: C, 51.74; H, 4.05; N, 12.07; Found: C, 51.76; H, 4.07; N, 12.08.

Ethyl-5-(4-methoxyphenyl)-5,8-dihydroimidazo[1,2-a]pyrimidine-7-carboxylate (30):

N NH O

White solid; yield 31 mg, 59%; MP: 162-164 °C; ¹H NMR (400 MHz, Chloroform-*d*): δ 9.59 (bs, 1H), 7.27-7.24 (m, 2H), 7.12 (d, J = 3.2 Hz, 2H), 6.90 (d, J = 8.4 Hz, 1H), 6.53 (d, J = 3.6 Hz, 1H), 6.15 (d, J = 3.6 Hz, 1H), 5.29 (d, J = 3.6 Hz, 1H), 4.33 (q, J = 7.2 Hz, 2H), 3.80 (s, 3H), 1.35 (t, J = 7.2 Hz, 3H). ¹³C NMR: (75 MHz, Chloroform-*d*) δ 161.58, 150.20, 148.70, 138.71, 132.33, 128.84, 128.57, 127.57, 123.01, 105.39, 62.12, 61.58, 54.35, 14.16. LCMS: m/z calculated for $C_{16}H_{17}N_3O_3$: 299.13; Observed mass: 300.2 (M+1); Anal. Calculated for $C_{16}H_{17}N_3O_3$: C, 64.20; H, 5.72; N, 14.04; Found: C, 64.22; H, 5.74; N, 14.06.

Ethyl-5-(3-(trifluoromethyl)-phenyl)-5,8-dihydroimidazo[1,2-a]pyrimidine-7-carboxylate (3p):


yield 40 mg, 66%; MP: 155-157 °C; ¹H NMR (400 MHz, Chloroform-*d*): δ 7.72-7.61 (m, 2H), 7.57-7.46 (m, 2H), 7.04 (d, J = 4.0 Hz, 1H), 6,51 (d, J = 4.0 Hz, 1H), 6.27 (d, J = 3.8 Hz, 1H), 5.90 (d, J = 4.0 Hz, 1H), 4.38 (dq, J = 7.2 Hz, 3.6 Hz, 2H), 1.36 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, DMSO) δ 161.62, 150.80, 149.35, 142.41,

131.49, 130.63, 129.69, 127.91, 125.62, 123.79, 113.91, 106.18, 62.19, 59.20, 14.33. **LCMS:** m/z calculated for $C_{16}H_{14}F_3N_3O_2$: 337.10; Observed mass: 338.2 (M+1); Anal. Calculated for $C_{16}H_{14}F_3N_3O_2$: C, 56.97; H, 4.18; N, 12.46; Found: C, 56.96; H, 4.19; N, 12.48.

Ethyl-5-(5-bromo-2-fluorophenyl)-5,8-dihydroimidazo[1,2-a]pyrimidine-7-carboxylate (3q):

Pale brown solid; yield 30 mg, 45%; MP: 170-172 °C; ¹H NMR (300 MHz, Chloroform-d): δ 10.02 (bs, 1H), 7.52 (dd, J = 7.0 Hz, 1.8 Hz, 1H), 7.27-7.16 (m, 2H), 7.10 (d, J = 3.6 Hz, 1H), 6.53 (d, J = 3.6 Hz, 1H), 6.16 (d, J = 3.9 Hz, 1H), 5.87 (d, J = 3.9 Hz, 1H), 4.35 (dq, J = 7.2 Hz, 3.6 Hz, 2H), 1.35 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, DMSO) δ 161.59, 150.80, 149.25, 141.91, 131.86, 131.60, 131.45, 129.36, 128.01, 127.67, 113.64, 105.78, 62.20, 58.61, 14.34. **LCMS:** m/z calculated for $C_{15}H_{13}BrFN_3O_2$: 365.02; Observed mass: 366.2, 368.2 (M+1, M+3); Anal. Calculated for $C_{15}H_{13}BrFN_3O_2$: C, 49.20; H, 3.58; N, 11.48; Found: C, 49.22; H, 3.59; N, 11.50.

Ethyl 5-(4-bromo-2-chlorophenyl)-5,8-dihydroimidazo[1,2-a]pyrimidine-7-carboxylate (3r):

White solid; Yield 34 mg, 54%; MP: 171-173 °C; ¹H NMR (500 MHz, DMSO) δ 10.22 (s, 1H), 7.69 (s, 1H), 7.64 (d, J = 8.3 Hz, 1H), 7.52 (d, J = 2.0

Hz, 1H), 7.18 - 7.16 (m, 1H), 6.81 (s, 1H), 6.35 (d, J = 3.9 Hz, 1H), 5.83 (d, J = 3.9 Hz, 1H), 4.25 - 4.20 (m, 2H), 1.31 - 1.24 (m, 3H); 13 C NMR (126 MHz, DMSO) δ 161.59, 150.80, 149.25, 141.91, 131.86, 131.60, 131.45, 129.36, 128.01, 127.67, 113.64, 105.78, 62.20, 58.61, 14.34; **LCMS:** m/z calculated for $C_{15}H_{13}BrClN_3O_2$: 381.00; Observed mass: 382.2, 384.2 (M+1, M+3); Anal. Calculated for $C_{15}H_{13}BrClN_3O_2$: C, 47.08; H, 3.42; N, 10.98; Found: C, 47.09; H, 3.44; N, 11.00.

Experimental procedure for synthesis of compound (4a-4h):

To a solution of 3-amino 1, 2, 4-triazole (0.30 mmol) in DMF (2.0 mL) was mixed with MBH Acetate of nitro alkene (0.36 mmol) and cesium carbonate (0.6 mmol) and the reaction mixture was heated to 60°C for 4h. After completion of reaction (monitored by LCMS), the reaction mixture was quenched with water (30 mL). The reaction mixture was extracted with ethyl acetate (3x 30 mL). The combined organic layers were dried over anhydrous sodium sulphate, filtered and concentrated over vacuum to give the crude product. To this crude product was added methanol (4 mL) and stirred for 30 min at RT. A white precipitate was obtained which was filtered gave the product (55% - 70%). The mother liquid contains a small amount of product along with small amount of other region isomer by LCMS.

Ethyl-7-phenyl-4,7-dihydro-[1,2,4]triazolo[1,5-a]pyrimidine-5-carboxylate-(4a):

White solid; yield 60 mg, 60%; MP: 182-184 °C; ¹**H NMR** (400 MHz, Chloroform-*d*): δ (ppm) 10.23 (bs, 1H), 7.78 (s, 1H), 7.42-7.28 (m, 5H), 6.22 (d, J = 4.0 Hz, 1H), 5.94 (d, J = 4.0 Hz, 1.6 Hz, 1H), 4.38 (dq, J = 7.2 Hz, 3.6 Hz, 2H), 1.36 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (75 MHz, Chloroform-*d*) δ (ppm) 161.82, 150.06, 148.99, 139.91, 129.02, 128.79, 127.42, 127.12, 106.10, 62.13, 60.63, 14.17; **LCMS**: m/z calculated for $C_{14}H_{14}N_4O_2$: 270.11; Observed mass: 271.2 (M+1); Anal. Calculated for $C_{14}H_{14}N_4O_2$: C, 62.21; H, 5.22; N, 20.73; Found: C, 62.22; H, 5.24; N, 20.75.

Ethyl-7-(4-methoxyphenyl)-4,7-dihydro-[1,2,4]triazolo[1,5-a]pyrimidine-5-carboxylate (4b):

N NH O O

White solid; yield 70 mg, 65%; MP: 180-182 °C; ¹H NMR (300 MHz, Chloroform-*d*): δ 9.86 (bs, 1H), 7.74 (s, 1H), 7.24 (dd, J = 9.0 Hz, 2.7 Hz, 2H), 6.92 (d, J = 9.0 Hz, 2H), 6.16 (d, J = 3.9 Hz, 1H), 5.93 (d, J = 3.9 Hz, 1H), 4.36 (dq, J = 7.2 Hz, 3.6 Hz, 2H), 3.81 (s, 3H), 1.36 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, Chloroform-*d*) δ 161.82, 159.98, 149.93, 148.64, 132.05, 128.54, 127.24, 114.38, 106.35, 62.15, 60.05, 55.33, 14.16. LCMS: m/z calculated for $C_{15}H_{16}N_4O_3$: 300.12; Observed mass: 301.2 (M+1); Anal. Calculated for $C_{15}H_{16}N_4O_3$: C, 59.99; H, 5.37; N, 18.66; Found: C, 59.98; H, 5.39; N, 18.68.

Ethyl-7-(3-(trifluoromethyl)phenyl)-4,7-dihydro-[1,2,4]triazolo[1,5-a]pyrimidine-5-carboxylate (4c):

N NH NH O

White solid; yield 70 mg, 58%; MP: 174-176 °C; ¹H NMR (300 MHz, Chloroform-d): δ 10.45 (bs, 1H), 7.80 (s, 1H), 7.64-7.48 (m, 4H), 6.30 (d, J = 3.9 Hz, 1H), 5.91 (d, J = 3.9 Hz, 1H), 4.40 (dq, J = 7.2 Hz, 3.6 Hz, 2H), 1.37 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 161.53, 150.37, 148.82, 140.73, 131.62, 130.63, 129.63, 127.79, 125.76, 123.89, 105.05, 62.41, 60.25, 14.13. LCMS: m/z calculated for $C_{15}H_{13}F_3N_4O_2$: 338.12; Observed mass: 339.2 (M+1); Anal. Calculated for $C_{15}H_{13}F_3N_4O_2$: C, 53.26; H, 3.87; N, 16.56; Found: C, 53.28; H, 3.89; N, 16.58.

Ethyl-7-(3,4-dichlorophenyl)-4,7-dihydro-[1,2,4]triazolo[1,5-a]pyrimidine-5-carboxylate (4d):

N NH O O O

White solid; yield 75 mg, 62%; MP: 185-187 °C; ¹H NMR (300 MHz, Chloroform-d): δ 9.80 (bs, 1H), 7.77 (s, 1H), 7.46 (dd, J = 8.2 Hz, 1H), 7.28-7.26 (m, 1H), 7.18 (d, J = 8.4 Hz, 1H), 6.18 (d, J = 3.9 Hz, 1H), 5.87 (d, J = 3.9 Hz, 1H), 4.38 (dq, J = 7.2 Hz, 3.6 Hz, 2H), 1.37 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, DMSO) δ 161.51, 150.68, 140.81, 139.08, 136.15, 128.84, 124.65, 103.72, 62.27, 59.33, 14.34. LCMS: m/z calculated for $C_{14}H_{12}Cl_2N_4O_2$: 338.03; Observed mass: 339.2 (M+1); Anal. Calculated for $C_{14}H_{12}Cl_2N_4O_2$: C, 49.58; H, 3.57; N, 16.52; Found: C, 49.60; H, 3.58; N, 16.54.

Ethyl-7-(4-bromophenyl)-4,7-dihydro-[1,2,4]triazolo[1,5-a]pyrimidine-5-carboxylate (4e):

N NH O O

White solid; yield 83 mg, 67%; MP: 191-193 °C; ¹H NMR (300 MHz, Chloroform-d): δ 9.65 (bs, 1H), 7.75 (s, 1H), 7.53 (d, J = 8.4 Hz, 2H), 7.19 (dd, J = 8.4 Hz, 1.8 Hz, 2H), 6.18 (d, J = 3.9 Hz, 1H), 5.90 (d, J = 3.9 Hz, 1H), 4.36 (dq, J = 7.2 Hz, 3.0 Hz, 2H), 1.36 (t, J = 7.2 Hz, 3H). ¹³C NMR (300 MHz, Chloroform-d): 161.58, 150.12, 148.70, 138.71, 132.20, 128.84, 128.57, 127.57, 123.01, 105.39, 62.33, 60.02, 14.14: LCMS: m/z calculated for C₁₄H₁₃BrN₄O₂: 348.02; Observed mass: 349.2, 351.2 (M+1, M+3); Anal. Calculated for C₁₄H₁₃BrN₄O₂: C, 48.16; H, 3.75; N, 16.05; Found: C, 48.18; H, 3.76; N, 16.07.

Ethyl-7-(4-hydroxyphenyl)-4,7-dihydro-[1,2,4]triazolo[1,5-a]pyrimidine-5-carboxylate (4f):

N NH O O

White solid; yield 53 mg, 52%; MP: 173-175 °C; ¹H NMR (400 MHz, DMSO) δ 10.02 (s, 1H), 7.62 (s, 1H), 7.17 – 7.11 (m, 2H), 6.95 – 6.88 (m, 2H), 6.22 (d, J = 4.0 Hz, 1H), 5.79 (d, J = 4.0 Hz, 1H), 4.30 – 4.19 (m, 2H), 1.26 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, Chloroform-d) δ 161.98, 159.93, 149.82, 148.54 132.05, 128.64, 126.35, 114.15, 107.24, 62.38, 60.17, 14.04. LCMS: m/z calculated for $C_{14}H_{14}N_4O_3$: 286.11; Observed mass: 287.2 (M+1); Anal. Calculated for $C_{14}H_{14}N_4O_3$: C, 58.73; H, 4.93; N, 19.57;

Ethyl-7-(2-bromopyridin-3-yl)-4,7-dihydro-[1,2,4]triazolo[1,5-a]pyrimidine-5-carboxylate (4g):

Found: C, 58.75; H, 4.95; N, 19.59.

Brown solid; yield 77 mg, 62%; MP: 197-200 °C; ¹H NMR (400 MHz, Chloroform-*d*): δ 9.88 (bs, 1H), 8.36 (s, 1H), 7.83 (m, 1H), 7.28-7.16 (m, 2H), 6.67 (d, J = 4.0 Hz, 1H), 6.01 (d, J = 4.0 Hz, 1H), 4.37 (q, J = 7.2 Hz, 2H), 1.38 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, DMSO) δ 160.50 (m), 150.81, 150.21, 149.16, 141.20, 136.84, 135.49, 128.86, 124.66, 103.72, 62.27, 59.33, 14.34; LCMS: m/z calculated for $C_{13}H_{12}BrN_5O_2$: 349.02; Observed mass: 350.2, 352.2 (M+1, M+3); Anal. Calculated for $C_{13}H_{12}BrN_5O_2$: C, 44.59; H, 3.45; N, 20.00; Found: C, 44.58; H, 3.46; N, 20.02.

Ethyl-7-(5-bromo-2-fluorophenyl)-4,7-dihydro-[1,2,4]triazolo[1,5-a]pyrimidine-5-carboxylate (4h):

Br O O

Plae brown solid; yield 35 mg, 53%; MP: 192-194 °C; ¹H NMR (300 MHz, DMSO-*d6*): δ 10.18 (bs, 1H), 7.70-7.60 (m, 3H), 7.48 (d, J = 7.2 Hz, 1H), 6.45

(d, J = 3.9 Hz, 1H), 5.86 (d, J = 3.9 Hz, 1H), 4.24 (q, J = 7.2 Hz, 2H), 1.26 (t, J = 7.2 Hz, 3H). ¹³C NMR (75MHz, DMSO-*d6*) δ 164.40, 152.93, 145.45, 140.82, 128.59, 128.41, 126.42, 125.18, 123.64, 65.93, 60.17, 13.14. LCMS: m/z calculated for $C_{14}H_{12}BrFN_4O_2$: 366.01; Observed mass: 367.1, 369.1 (M+1, M+3); Anal. Calculated for $C_{14}H_{12}BrFN_4O_2$: C, 45.80; H, 3.29; N, 15.26; Found: C, 45.82; H, 3.30; N, 15.28.

Experimental procedure for synthesis of compound (5a & 5b):

To a solution of 5-amino tetrazole (0.075 mmol) in DMF (1.0 mL) was mixed with MBH Acetate of nitro alkene (0.09 mmol) and cesium carbonate (0.15 mmol) and the reaction mixture was heated to 60°C for 4h. After completion of reaction (monitored by LCMS), the reaction mixture was quenched with water (10 mL). The reaction mixture was extracted with ethyl acetate (3x 10 mL). The combined organic layers were dried over anhydrous sodium sulphate, filtered and concentrated over vacuum to give the crude product. To this crude product was added methanol (2 mL) and stirred for 30 min at RT. A white precipitate was obtained which was filtered gave the product (70% - 75%). The mother liquid contains a small amount of product along with small amount of other region isomer by LCMS.

Ethyl-7-phenyl-4,7-dihydrotetrazolo[1,5-a]pyrimidine-5-carboxylate (5a):

yield 18 mg, 75%; MP: 201-204 °C; ¹H NMR (300 MHz, Chloroform-*d*): δ 7.62-7.55 (m, 3H), 7.35-7.25 (m, 2H), 6.67 (d, J = 3.9 Hz, 1H), 6.02 (d, J = 3.9 Hz, 1H), 4.36 (q, J = 7.2 Hz, 2H), 1.36 (t, J = 7.2 Hz, 3H). **LCMS:** m/z calculated for

 $C_{13}H_{13}N_5O_2$: 271.11; Observed mass: 272.2 (M+1).

Ethyl-7-(4-methoxyphenyl)-4,7-dihydrotetrazolo[1,5-a]pyrimidine-5-carboxylate (5b):

N-N N NH O

yield 19 mg, 72%; MP: 200-202 °C; ¹H NMR (300 MHz, DMSO-*d6*): δ 10.01 (s, 1H), 7.14 (d, J = 8.7 Hz, 2H), 6.92 (d, J = 8.7 Hz, 2H), 6.21 (d, J = 3.9 Hz, 1H), 5.78 (dd, J = 3.9 Hz, 1.5 Hz, 1H), 4.25 (dq, J = 7.2 Hz, 2H), 3.72 (s, 3H), 1.26 (t, J = 7.2 Hz, 3H). **LCMS:** m/z calculated for C₁₄H₁₅N₅O₃: 301.12; Observed mass: 302.2 (M+1).

Figure 1: Imidazopyrimidine containing drugs

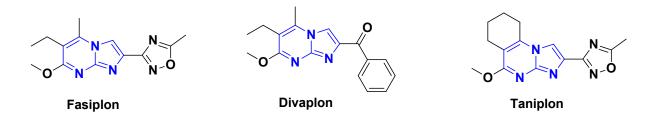


Figure 2: AChE inhibitors clinically used for the treatment of AD

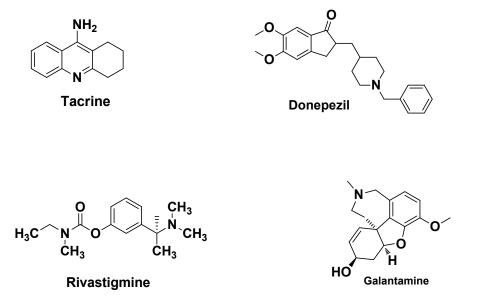
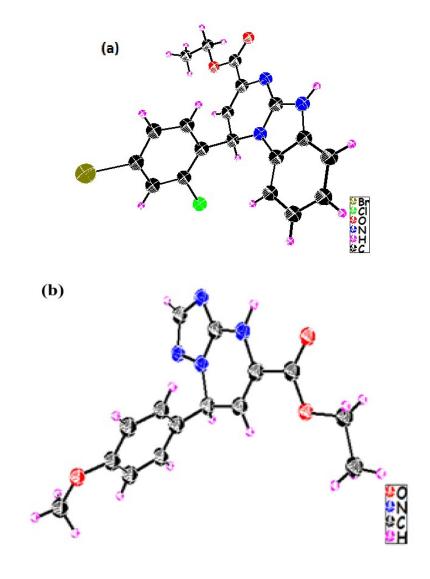
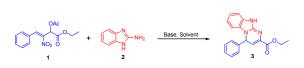
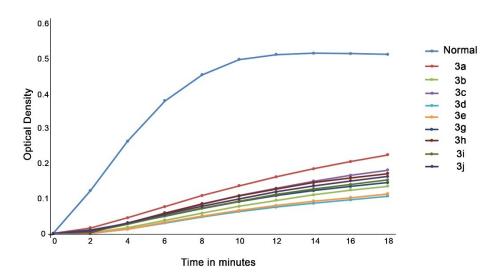




Figure 3: ORTEP diagram of (a) compound 3e and (b) compound 4b

Table 1. Screening of reaction conditions ^a

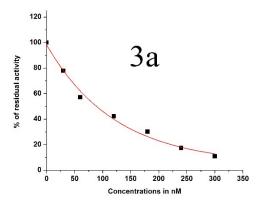
S.No Base		Solvent	Temp	Yield ^b (%)
1		THF	RT	0
2		THF	70°C	0
3	Et ₃ N	THF	RT	20
4	DIPEA	THF	RT	22
5	Pyridine	THF	RT	40
6	2,6-Lutidine	THF	RT	40
7	DABCO	THF	RT	44
8	DBU	THF	RT	49
9	K ₂ CO ₃	THF	RT	60
10	Cs_2CO_3	THF	RT	80
11	Cs ₂ CO ₃	CH ₂ Cl ₂	RT	45
12	Cs ₂ CO ₃	CHCl ₃	RT	48
13	Cs ₂ CO ₃	MeOH	RT	60
14	Cs ₂ CO ₃	EtOH	RT	68
15	Cs ₂ CO ₃	CH₃CN	RT	82
16	Cs_2CO_3	1,4-dioxane	RT	81

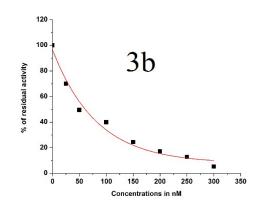
Biology


Enzyme Inhibition studies

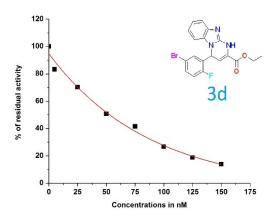
The *in vitro* inhibitory effect of newly synthesized ligands was assessed by Ellman's method²² using AMPLITETM AChE assay kit(AAT Bioquest, Inc., Sunnyvale, CA). The assay system consists of AChE from electric eel (EC 3.1.1.7), 5,5-dithiobis-(2-nitrobenzoic acid) (DTNB, known as Ellman's reagent) and acetylcholine. The assay procedure is as follows, an aliquots (total volume 100μL) was prepared by mixing 5.7 nMAChE (prepared in 0.1 % of BSA containing distilled water) with acetylcholine (500 μM) and DTNB in a reaction buffer of pH 7.4. As a result of enzyme substrate interaction, the yellow colour formation was monitored and measured at 405 nm using a spectrophotometer at a time interval 2 minutes each for 20 minutes. Later the optical density was plotted against time. The same experiment (in triplicate) was repeated by incubating (15 minutes) the enzyme with different ligands. The relative activities of all ligands were expressed and compared with that of native enzyme activity. Finally the half maximal inhibitory concentration (IC₅₀) was determined for each ligands.

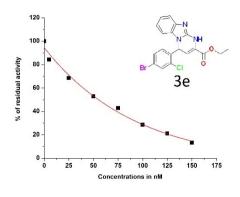
Table 2: The *in vitro* AChE inhibitory profile of compounds 3a-3j

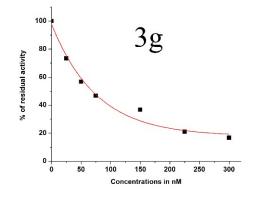

S. No	Compound	% of Inhibition at 208 nM	hAChE IC50 (nM)+ SD
1	3a	53	70.78 ± 10.01

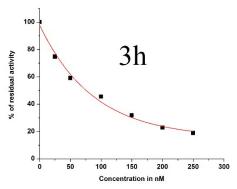

2	3b	70	52.64 ± 1.07
3	3c	62	91.8 ± 3.6
4	3d	76	46.86 ± 1.16
5	3e	74	42.52 ± 5.17
6	3g	69	71.48 ± 5.04
7	3h	61	67.32 ± 4.94
8	3i	67	52.58 ± 15.65
9	3j	65	68.4 ± 7.94
10	Tacrine		551.58 ± 19.17
11	Galanthamine		360 ± 10^{1}

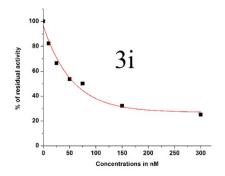



Figure 4: Velocity time graph obtained for native enzyme and in presence of compounds (208 nM)


IC50 graphs for compounds 3a-3j







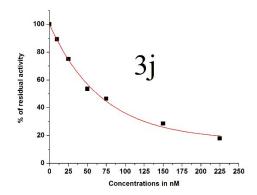
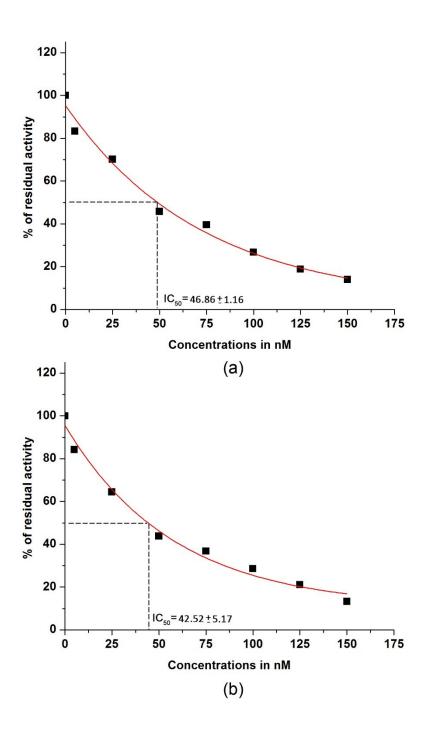
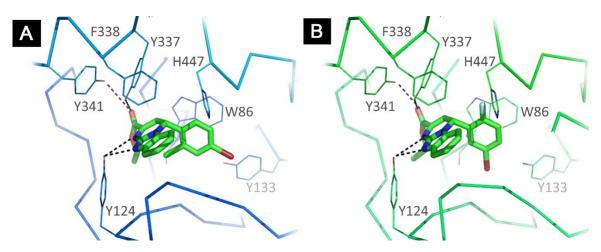



Figure 5: Relative residual activity of AChE plotted against the different concentrations of the most potent compounds 3d (a) and 3e (b).

Table 3: ADME profile of the compounds predicted by QikProp program


Commound	MW	HBD	HBA	LogP	CNS	Rotor	N and O
Compound	(≤ 450 Da)	(≤3)	(≤ 7)	(≤5)	(≥0)	(≤7)	(≤7)

3a	319	1	3	4.35	0	2	5
3b	398	1	3	4.92	0	2	5
3c	333	1	3	4.66	0	2	5
3d	416	1	3	5.01	0	2	5
3e	433	1	3	5.32	0	2	5
3g	417	1	4	4.41	0	2	6
3h	335	2	4	3.58	-2	3	6
3i	337	1	3	4.53	0	2	5
3j	348	1	5	3.51	-2	3	7

Compound	BBB	SASA	Volume	PSA	Caco	MDCK	%
	(-1.2 -1.2)	$(320-735 \text{ Å}^2)$	(≤1250 ų)	$(60-70 \text{ Å}^2)$	(≥ 500 nm/s)	(≥ 500 nm/s)	HOA
3a	-0.51	605	1052	64	1171	587	100
3b	-0.35	634	1105	64	1171	1554	100
3c	-0.54	637	1112	64	1171	587	100
3d	-0.27	641	1118	64	1170	2391	100
3e	-0.22	649	1141	63	1174	3126	100
3g	-0.51	634	1106	76	675	1362	100
3h	-1.12	618	1077	86	355	161	94
3i	-0.43	612	1065	64	1169	899	100
3j	-1.16	620	1090	96	319	144	92

Table 4: The binding energetics of the compounds at the active site of hAChE

Name	Glide score	Binding	Interacting residues
		energy	
3a	-8.24	-74.38	F338,H447,Y337 and W86
3b	-8.62	-75.55	F338,H447, Y337, Y124 and W86
3c	-8.09	-72.60	F338,H447,Y124,Y337 and W86
3d	-9.15	-87.03	F338,H447, Y341,Y124,Y337 andW86
3e	-9.79	-92.26	F338,H447,Y341,Y337, Y124 and W86
3g	-8.70	-85.55	F338,Y124,Y337 and W86
3h	-9.11	-75.07	F338,Y124,Y133, G121 and W86
3i	-8.90	-76.65	F338,H447,Y124,Y337 and W86
3j	-9.04	-74.13	F338,H447,Y124,Y337 andW86
Galanthamine	-9.69	-81.51	F338,S203,E202 and Y337

Figure 6: Binding pattern of compounds 3e (A) and 3d (B) at the active site of hAChE. The protein residues are shown in lines and the compounds are shown in stick. The hydrogen bonds are indicated by dotted lines

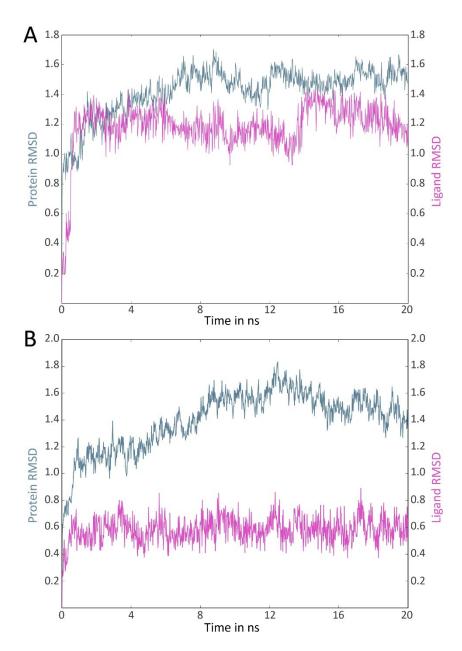
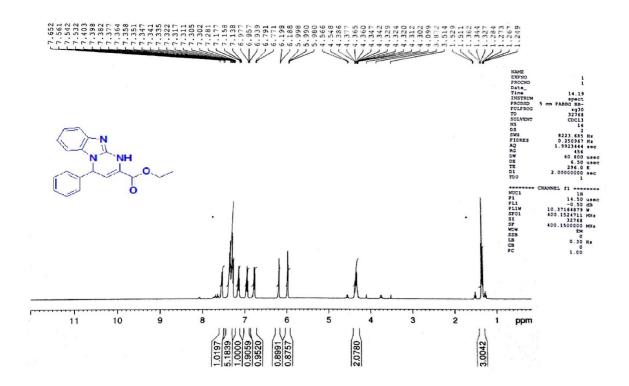
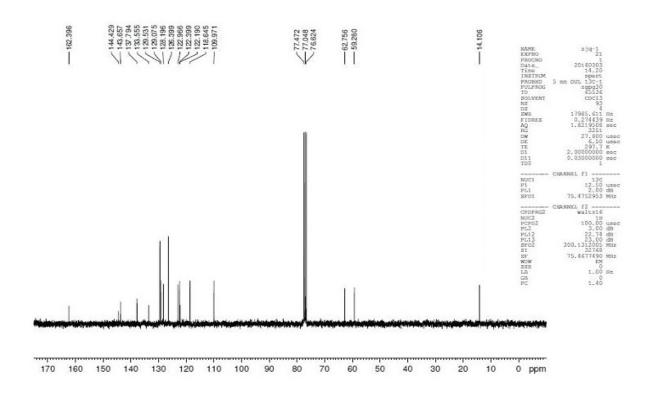
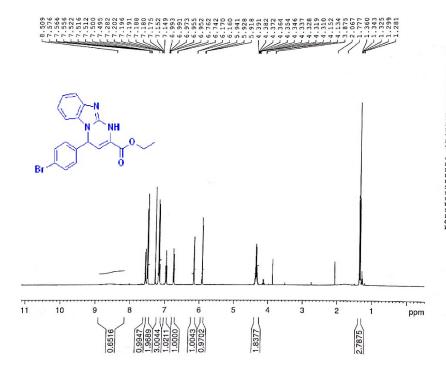
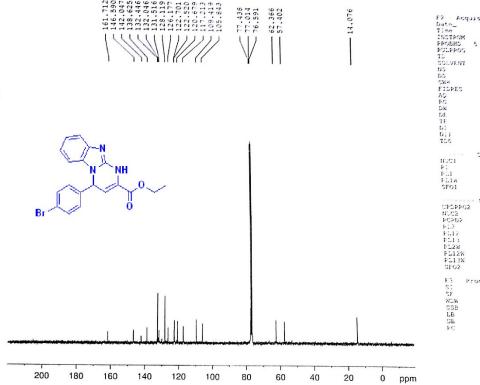




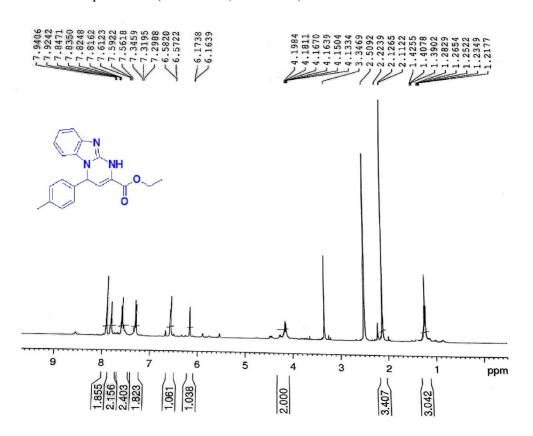
Figure 7: The RMSD graph of $C\alpha$ (blue in colour), ligand displacement (pink in colour) of 3d (A) 3e (B) respectively


¹H NMR for compound 3a

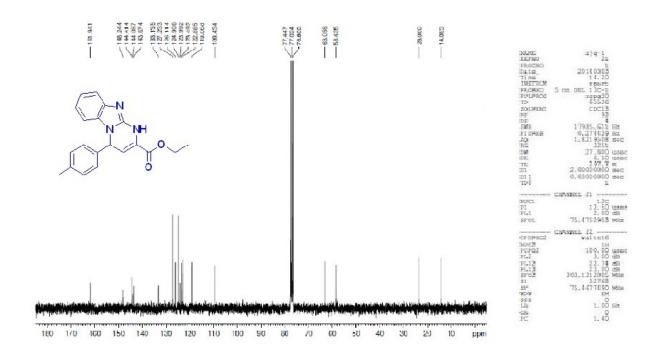
¹³C for compound 3a



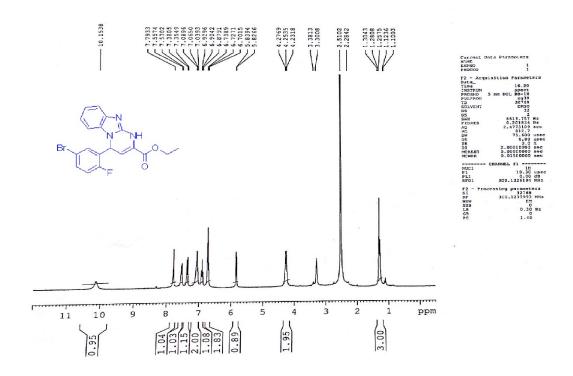
¹H NMR for compound 3b

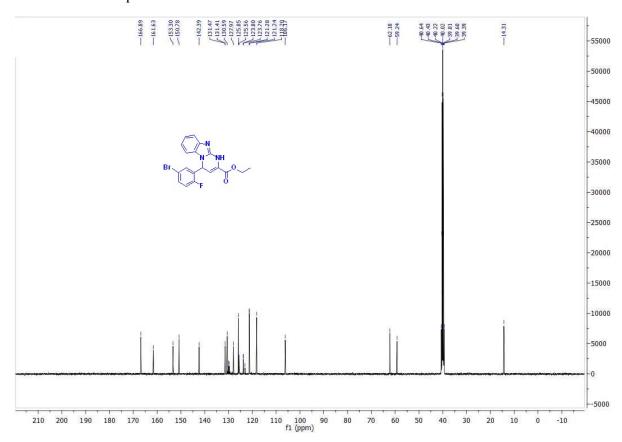


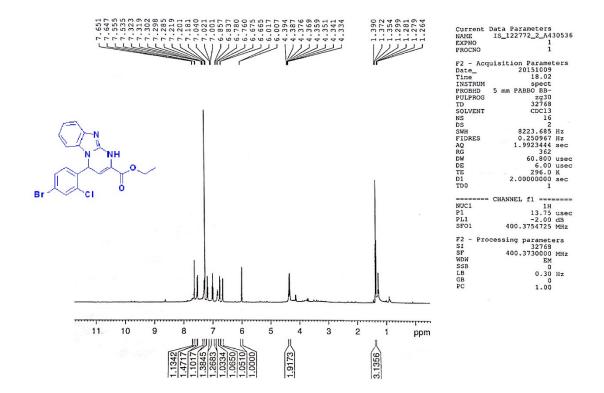
¹³C NMR for compound 3b

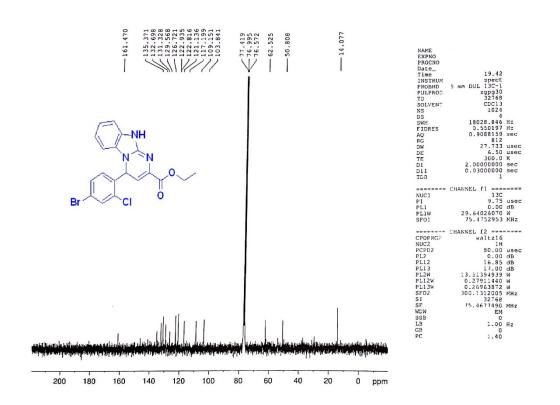


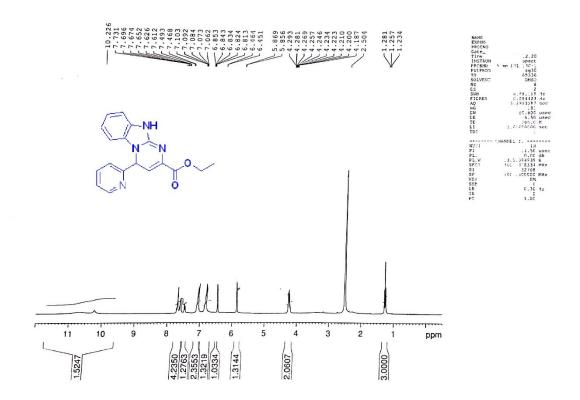
65 (. (.)
rz - Acqui Date_	sition Parameters 20160220
Time	2.00
INSTRUM	spect
	mm DUL 13C-1
PULPPOG	zgpg30
TD	32768
SOLVENT	CDC13
NS	1500
DS	1500
SME	19029.846 82
FIDPES	0.550197 Hz
AO	0.9088159 sec
RG	
DW	812 27.733 usec
DE.	27.733 USec
TE.	5.50 usec
	300.0 K
D1	2.00000000 sec
011	0.03000000 sec
TEC	1
	CHANNEL fl -==
NUC1	13C
P:	9.75 usec
P1.1	0.00 da
FL1W	29.64026070 W
SFO1	75.4752953 MHz
	CHANNEL f2 ======
CPDPPG2	waltz16
NUC2	Waltzis 1H
FCPD2	
F1.2	30.00 usec
PL12	0.00 dB
PLI3	16.85 dB
	17.00 dB
PL2W	13.51394939 W
PL12W	0.27911440 W
PL13W	0.26963872 W
SFO2	300.1312005 MHz
F3 Pro	cessing parameters
s:	32768
SF	75.4677490 MHz
WCW	EM
SSB	0
LB	
GE	1.00 Hz
	0
FC	1.40

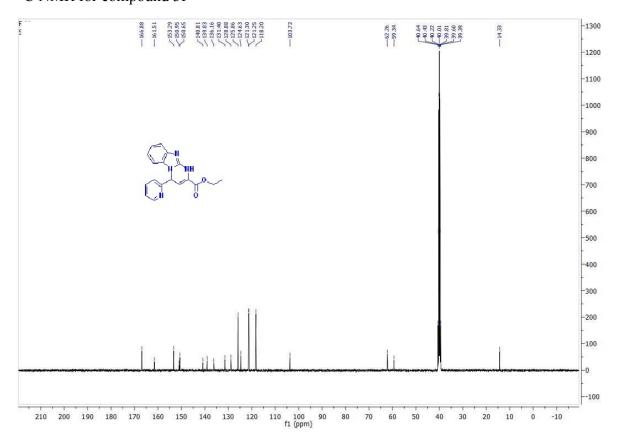

¹H NMR for compound 3c (DMSO-d6, 400 MHz)

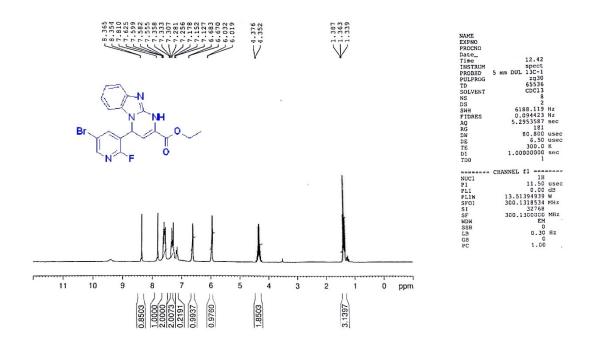

¹³C NMR for compound 3c

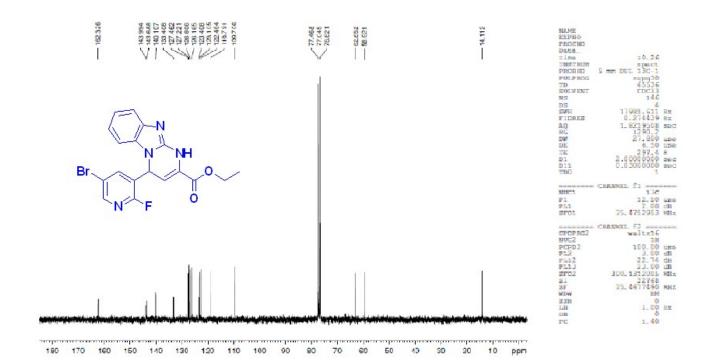

¹H NMR for compound 3d (DMSO-d6, 300 MHz)


¹³C NMR for compound 3d

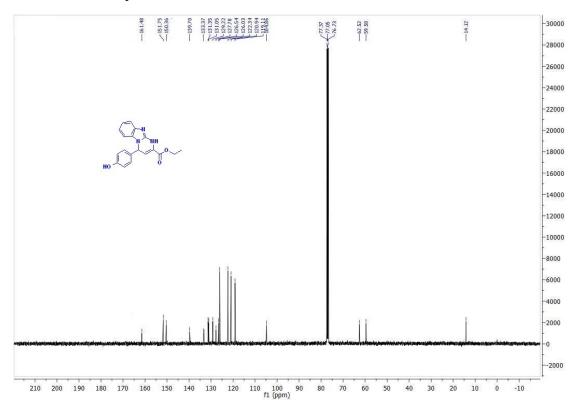

¹H NMR for compound 3e

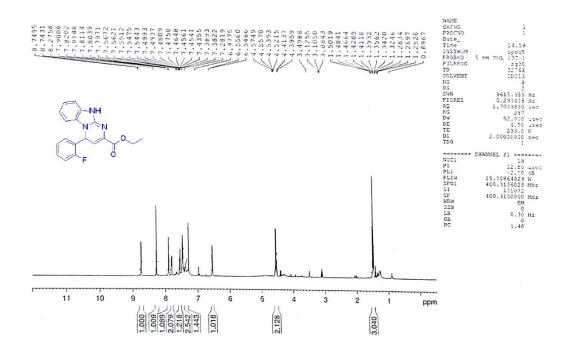

¹³C NMR for compound 3e

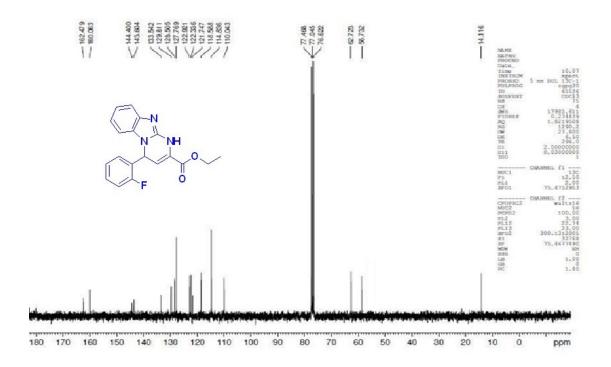

^{1}H NMR compound 3f

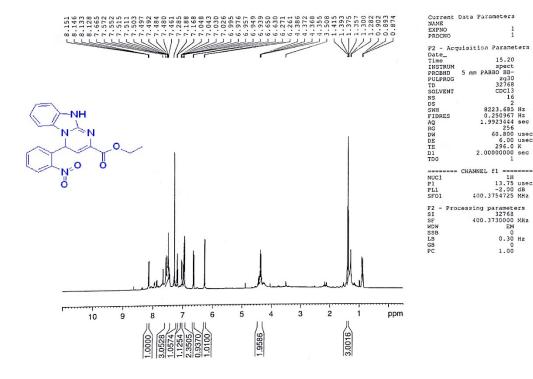

¹³C NMR for compound 3f

¹H NMR for compound 3g


¹³C NMR for compound 3g

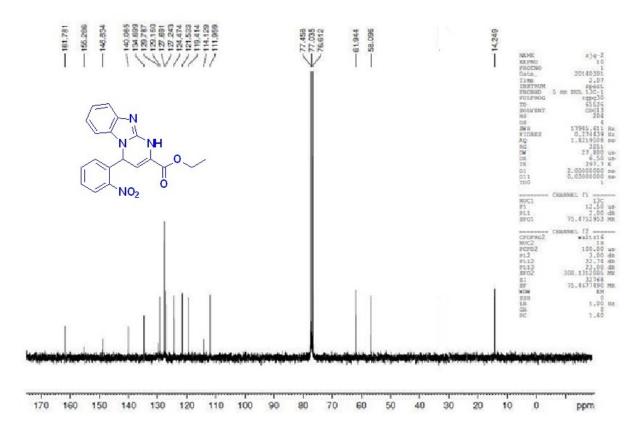

¹H NMR for compound 3h (CDCl3, 400 MHz)


¹³C NMR for compound 3h

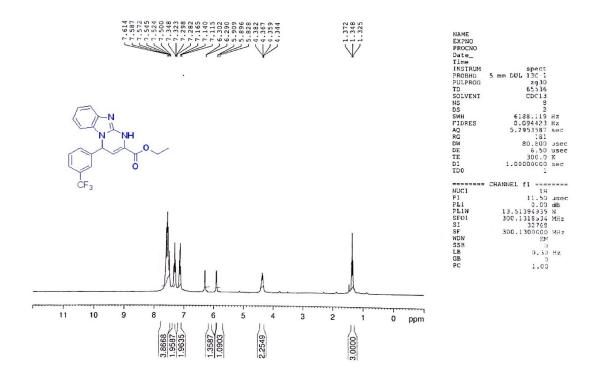

¹H NMR for compound 3i

¹³C NMR for compound 3i

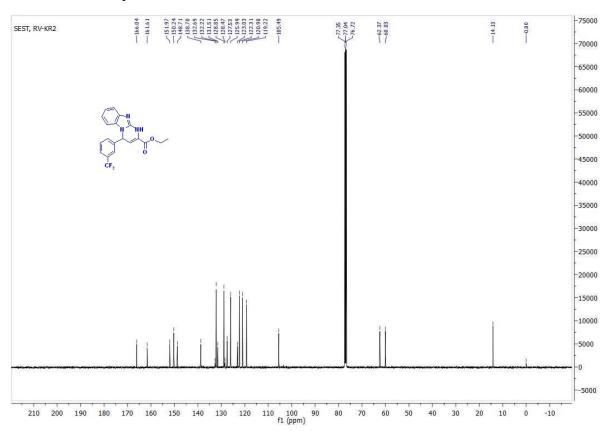
¹H NMR for compound 3j

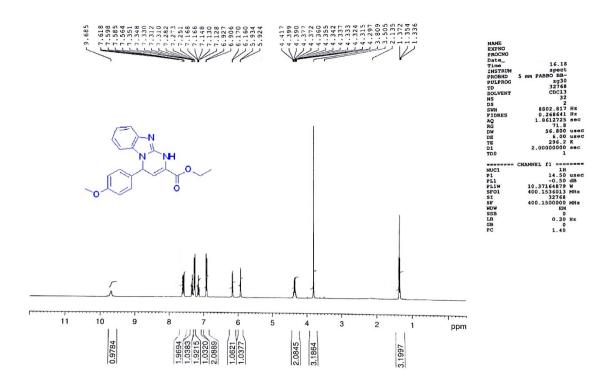

CHANNEL f1 -----
1H

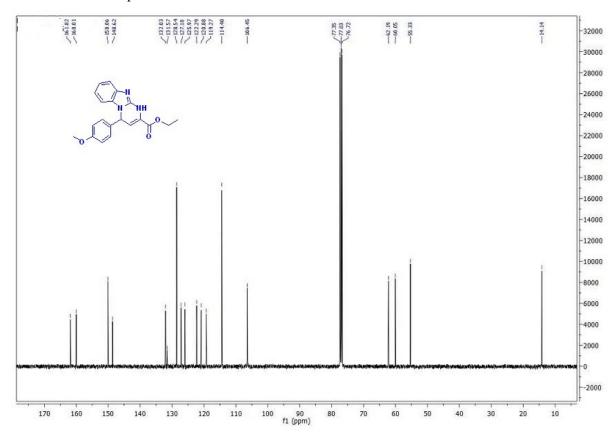
13.75 usec

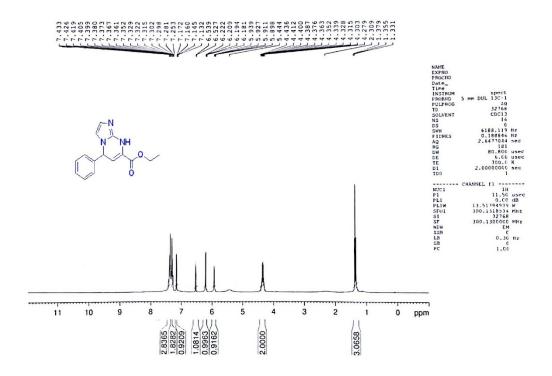

-2.00 dB

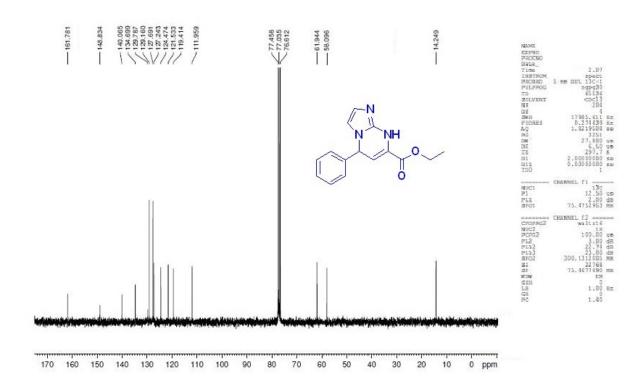
400.3754725 MHz

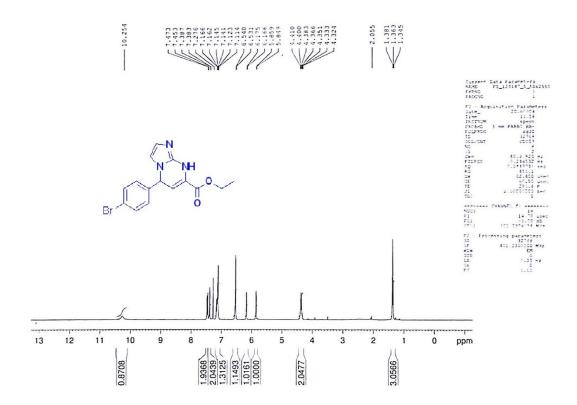

¹³C NMR for compound 3j

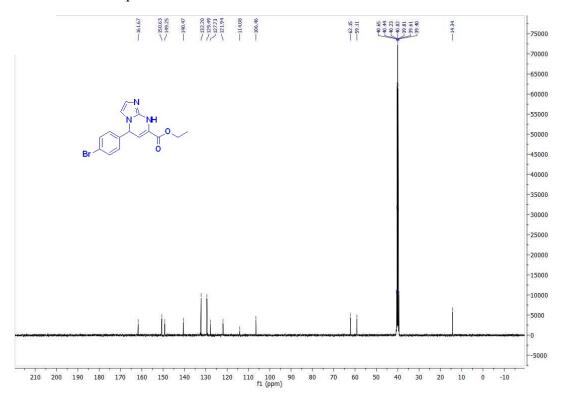

¹H NMR for compound 3k

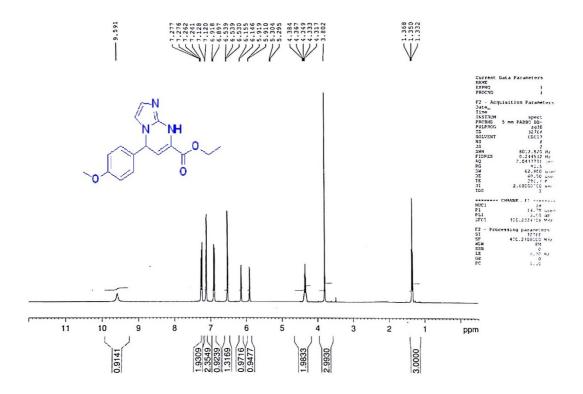

¹³C NMR for compound 3k

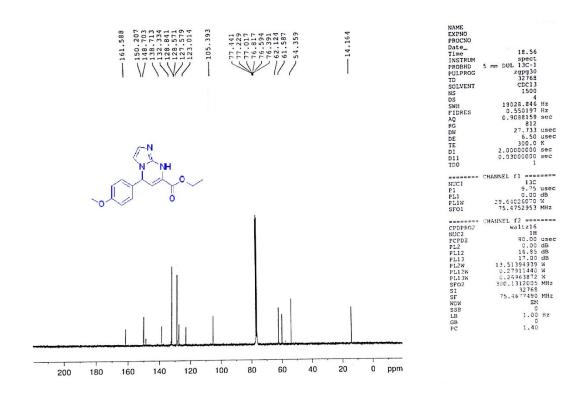

¹H NMR for compound 31

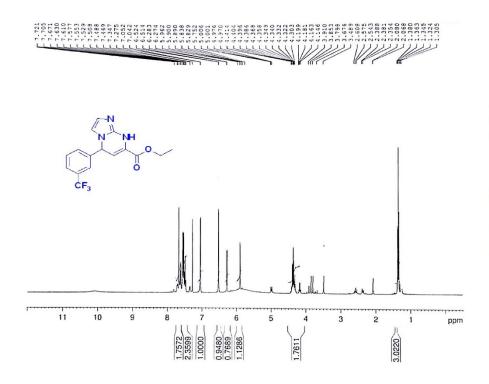

¹³C NMR for compound 31


¹H NMR for compound 3m

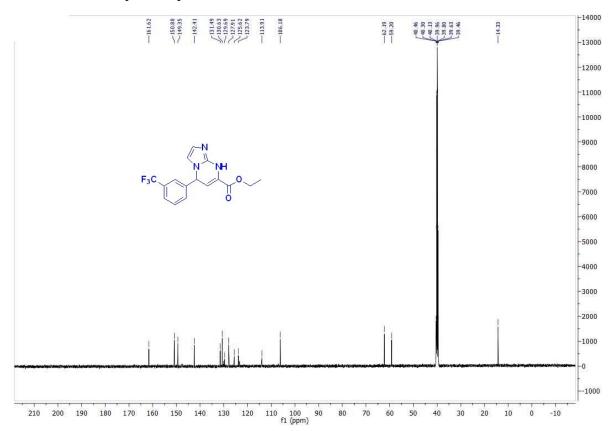

¹³C NMR for compound 3m


¹H NMR for compound 3n

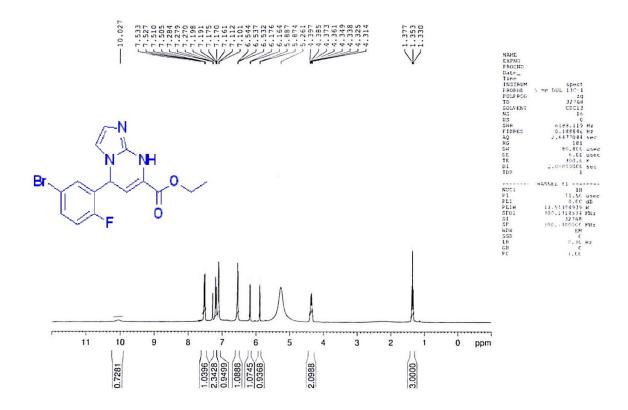

¹³C NMR for compound 3n

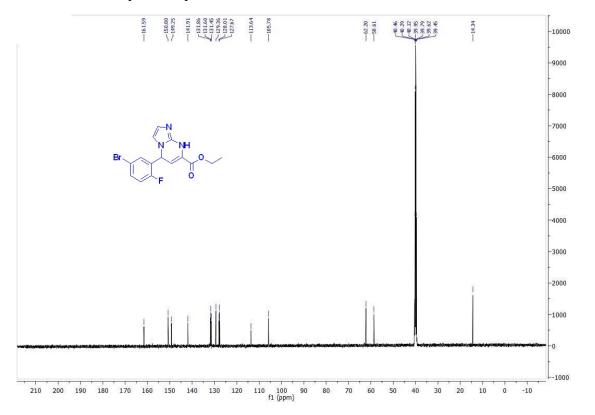

¹H NMR for compound 30

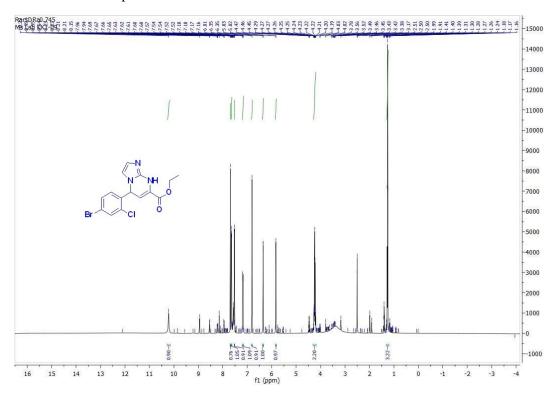
¹³C NMR for compound 30

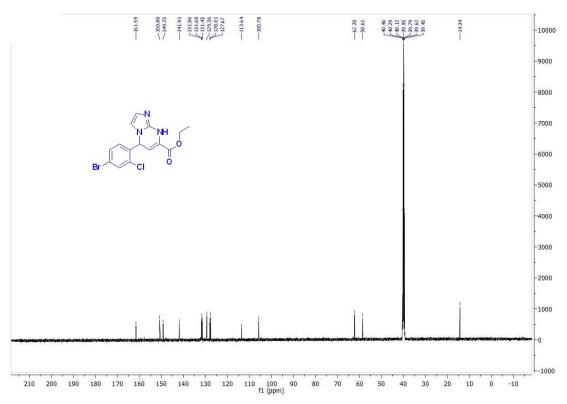


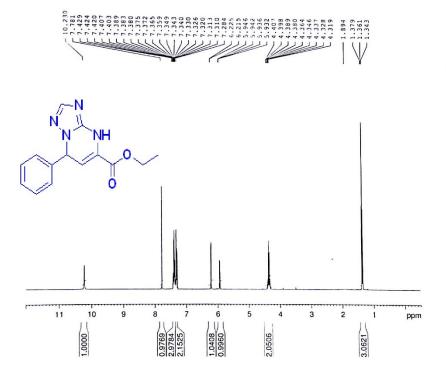
¹H NMR for compound 3p



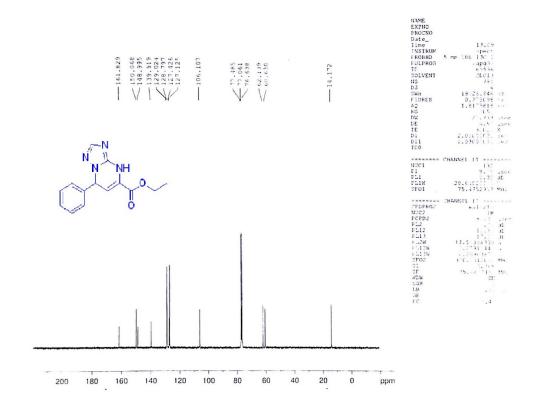

¹³C NMR for compound 3p


¹H NMR for compound 3q

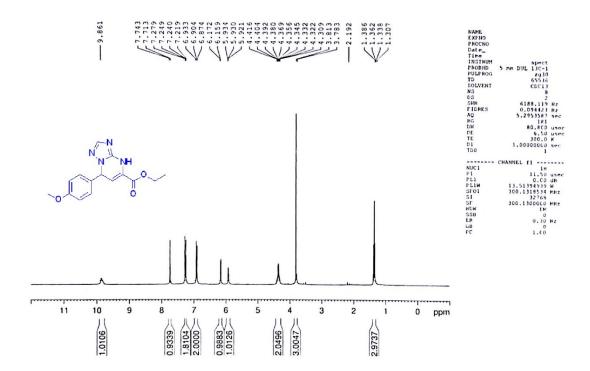

¹³C NMR for compound 3q

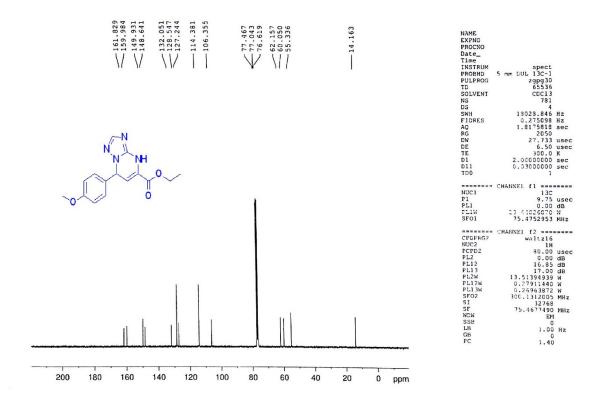

¹H NMR for compound 3r

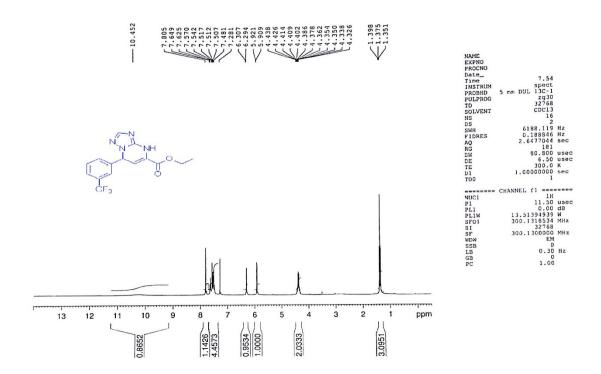
¹³C NMR for compound 3r

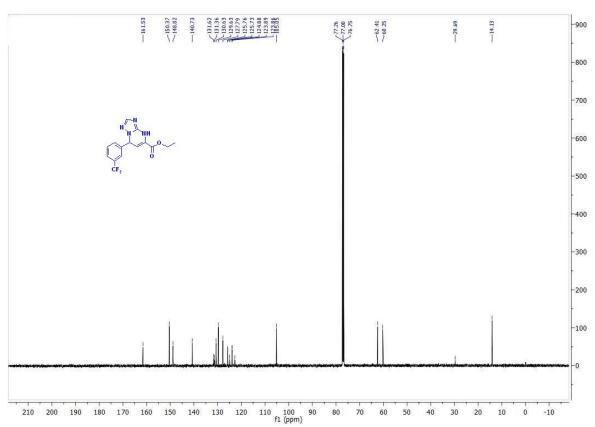


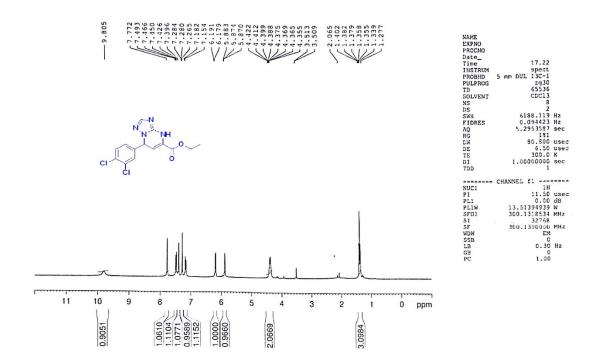
¹H NMR for compound 4a

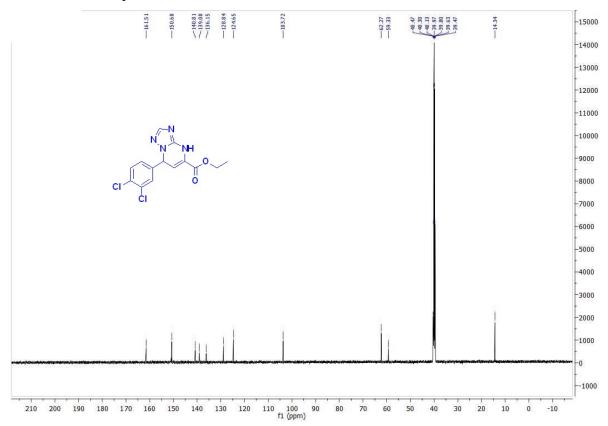


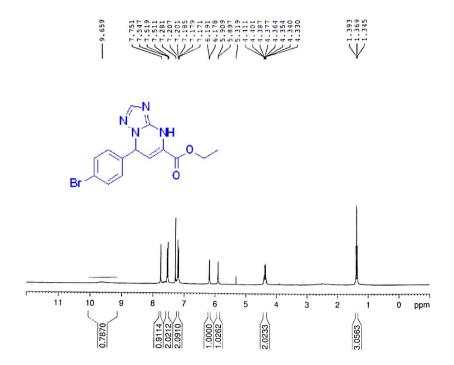

¹³C NMR for compound 4a


¹H NMR for compound 4b

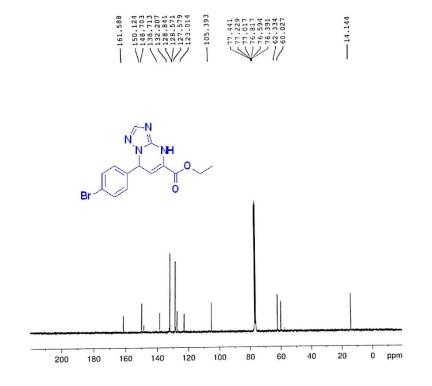

¹³C for compound 4b


¹H NMR compound 4c

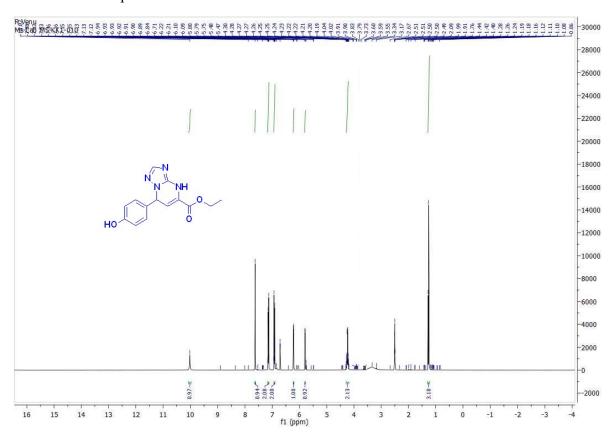

¹³C NMR for compound 4c


¹H NMR for compound 4d

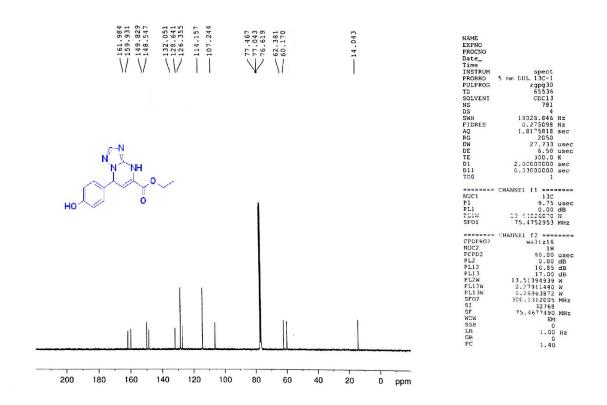
¹³C NMR for compound 4d



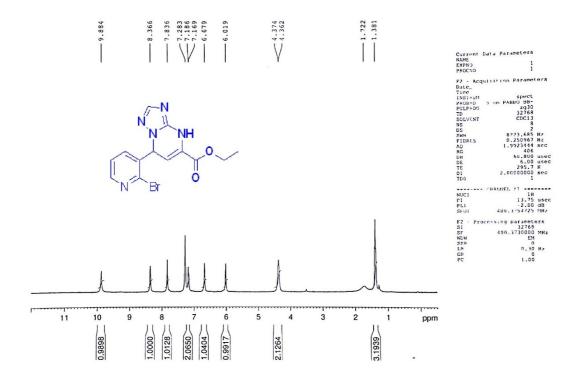
¹H NMR for compound 4e

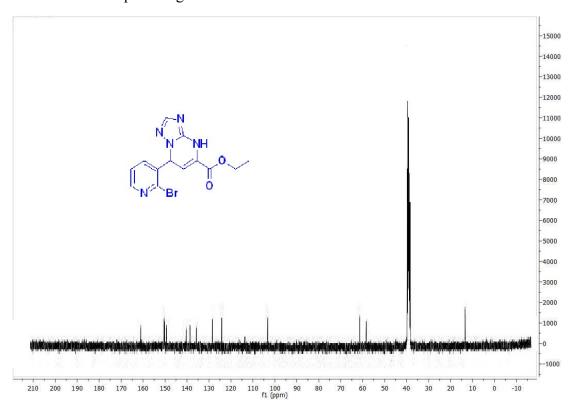

NAME		
EXPNO		
PROCNO		
Date_		
Time	15.14	
INSTRUM	apect	
PROBHD	5 mm DUL 13C-1	
PULPROG	2930	
TD	65536	
SOLVENT	CDC13	
NS	8	
DS	2	
SWH	6188.119	Hz
FIDRES	0.094423	Hz
AO	5.2953587	sec
RG	181	
DW	80.800	usec
DE	6.50	usec
TE	300.0	K
D1	1.00000000	sec
TDD	1	
	CHANNEL fl	
NUC1	1H	
P1	11.50	
PL1	0.00	dB
PL1W	13.51394939	W
SFO1		MHZ
51	32768	
SF	300.1300000	MHZ
WDW	EM	
SSB	0	
LB	0.30	Hz
GB	0	
PC	1.00	

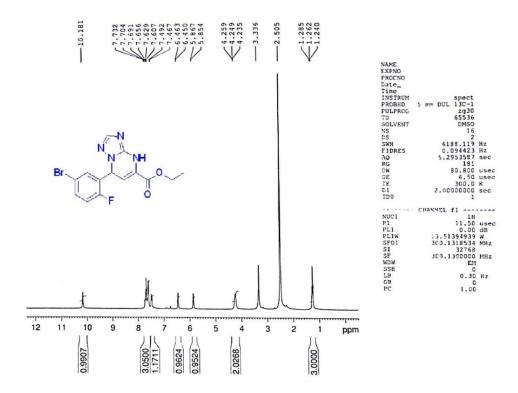
¹³C NMR for compound 4e

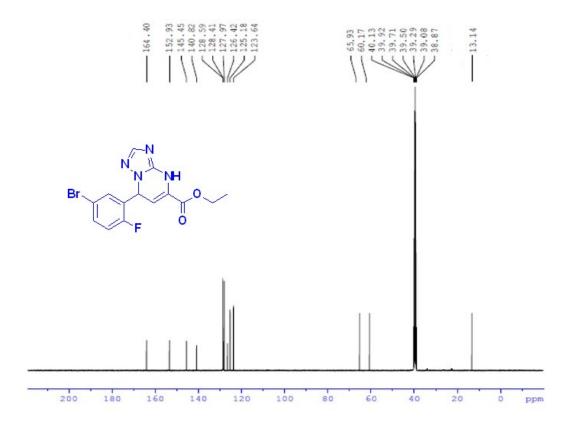


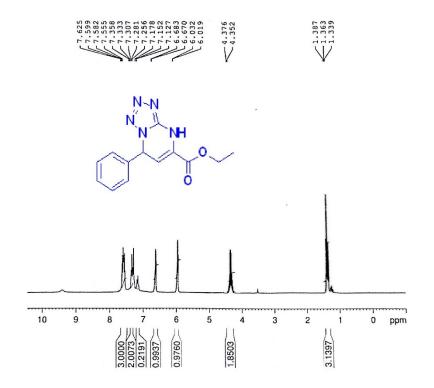
NAME		
EXPNO		
PROCNO		
Date_	And the second	
Time	18.56	
INSTRUM	spect	
PROBHD	5 mm DUL 13C-1	
PULPROG	zgpg30 32768	
TD	CDC13	
SOLVENT	1500	
NS	1300	
DS	13028.846	Hz
SWH	0.550197	Hz
FIDRES	0.9088159	sec
RG	812	
DW	27.733	usec
DE	6.50	usec
TE	300.0	
D1	2.00000000	sec
D11	0.03000000	sec
TD0	1	
	CHANNEL f1 ==== 13C	
NUC1	9.75	
P1 PL1	0.00	
PLIW	29.64026070	W
SFO1	75,4752953	MHZ
	0.00	
******	CHANNEL f2 ====	====
CPDPRG2	waltz16	
NUC2	1H 30.00	
PCPDZ	0.00	
PL2 PL12	16.85	
PL12 PL13	17.00	
PL2W	13.51394939	
PL12W	0.27911440	W
PL13W	0.25963872	W
SFO2	300.1312005	MHz
SI	32769	
SF	75.4677490	MHZ
WDW	EM	
SSE		**-
LB	1.00	nz
GB	1.40	
PC	1.40	


¹H NMR for compound 4f

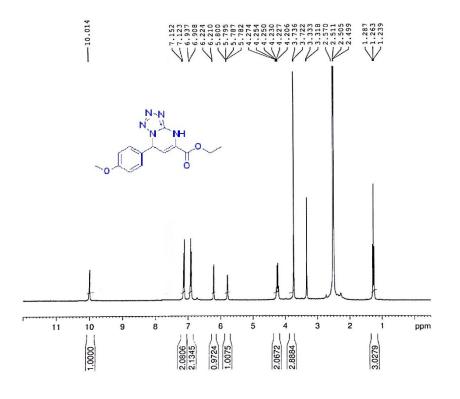

¹³C NMR for compound 4f


¹H NMR for compound 4g


¹³C NMR for compound 4g


¹H ¹NMR for compound 4h

¹³C NMR for compound 4h (DMSO-d6)



¹H NMR for compound 5a

NAME		
EXPNO		
PROCNO		
Date_		
Time	12.42	
INSTRUM	spect	
PROBHD	5 mm DUL 13C-1	
PULPROG	zg30	
TD	65536	
SOLVENT	CDC13	
NS	8	
DS	2	
SWH	6188.119	Hz
FIDRES	0.094423	
AQ	5.2953587	sec
RG	181	
DW	80.800	
DE	6.50	
TE	300.0	
D1	1.00000000	sec
TDO	1	
	CHANNEL fl ====	
NUC1	1H	
P1	11.50	
PL1	0.00	
PL1W	13.51394939	
SFO1	300.1318534	MHz
SI	32768	
SF	300.1300000	MHZ
WDW	EM	
SSB	0	
LB	0.30	Hz
GB	0	
PC	1.00	

¹H NMR for compound 5b

NAME		
EXPNO		
PROCNO		
Date_		
Time		
INSTRUM	spect	
PROBHD	5 mm DUL 13C-1	
PULPROG	zg30	
ID	65536	
SOLVENT	DMSO	
NS	8	
DS	2	
SWH	6138.119	
FIDRES	0.094423	Hz
AO	5.2953587	sec
RG	181	
DW	80.800	
DE	6.50	
TE	300.0	
D1	2.00000000	sec
TDO	1	
	CHANNEL fl	
NUC1	111	
P1	11.50	
PL1	0.00	
PLIW	13.51394939	
SF01	300.1318534	MHZ
SI	32768	
SF	300.1300000	MHZ
WDW	EM	
SSB	0	
LB	0.30	Hz
GB	0	
PC	1.00	