Highly Efficient Orange Phosphorescent Organic Light-Emitting Diodes Based on Iridium (III) Complex with Diethyldithiocarbamate (S^S) as the Ancillary Ligand

Qunbo Mei,^{*,a} Chen Chen,^a Ruqiang Tian,^a Min Yang,^a Bihai Tong,^b Qingfang Hua,^a Yujie Shi,^a Quli Fan,^a Shanghui Ye,^{*,a}

^aKey Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials(IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China; ^bCollege of Metallurgy and Resources, Anhui University of Technology, Ma'anshan, Anhui 243002, P. R. China;

* Corresponding author. e-mail: iamqbmei@njupt.edu.cn; iamshye@njupt.edu.cn; iamwhuang@njupt.edu.cn

Contents

1. GC-MS, High Resolution MS Spectra, 1H-NMR, 13C NMR Spectra and EI-MS spectra

- 2. The X-ray crystallography of Ir(dpp)₂(dta)
- 3. Life time of Ir(dpp)₂(dta)
- 4. Electrochemical properties of ferrocene/ferricenium (Fc/Fc+) and Ir(dpp)₂(dta)
- 5. Data of photophysical properties
- 6. PL spectra for different doping concentrations
- 7. The data of Ir(dpp)₂dta doping density from 1% to 10%.(we need in the paper)
- 8. CIE plot of Ir(dpp)₂(dta)
- 9. External quantum efficiency–Luminance of the devices

1. GC-MS, High Resolution MS Spectra, H-NMR, 13C NMR Spectra and EI-MS spectra

Figure S1.GC-MS of 4,6-Diphenyl pyrimidine in THF

Figure S2. ¹H NMR of 4,6-Diphenyl pyrimidine in CDCl₃

Figure S4. ¹H NMR of Ir(dpp)₂dta in CDCl₃

Figure S5. ¹³C NMR of Ir(dpp)₂dta in CDCl₃

Ir(dpp)₂(dta)

Spectrum from 1030pos11.wiff (sample 1) - Sample011, Experiment 1, +TOF MS (100 - 2000) from 0.213 to 0.456 min

Figure S6. High resolution MS spectra of Ir(dpp)₂(dta).

2.The X-ray crystallography of Ir(dpp)2(dta)

(CCDC 1402238 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via https://www.ccdc.cam.ac.uk/deposit)

Identification code	Ir(dpp) ₂ (dta)
Empirical formula	C ₃₇ H ₃₂ Ir N ₅ S ₂
Formula weight	804.00
Temperature	293 K
Wavelength	0.71073 Å
space group	P-1
Unit cell dimensions	a = 10.4442(7) Å alpha = 72.086(1) deg.
	b = 13.1344(10) Å beta = 88.803(2) deg.
	c = 15.5974(12) Å gamma = 81.704(1) deg.
Volume	2014.0(3) Å ³
Z, Calculated density	2, 1.464 Mg/m ³
Absorption coefficient	3.583 mm ⁻¹
F(000)	880.0
F(000 ⁻)	878.47
Theta range for data collection	2.35 to 27.45 deg.
Reflections collected / unique	10037 / 9736
Data completeness	97.0 %
Max. and min. transmission	0.616 and 0.506
Final R indices [I>2sigma(I)]	R1 = 0.0354, wR2 = 0.0963

Table S1. Crystal data and structure refinement for Ir(dpp)₂(dta).

Table S2	Bond lengths $[Å]$ and angles $[deg]$ for $Ir(dnn)_{2}(dtg)$
10010 02.	bolid lengths [11] and angles [deg] for h (upp)/(d (a).

Ir(2)-C(38)	2.009(4)	
Ir(2)-C(54)	2.019(4)	
Ir(2)-N(7)	2.051(3)	
Ir(2)-N(9)	2.048(3)	
Ir(2)-S(1)	2.4644(9)	
Ir(2)-S(2)	2.44785(9)	
C(38)-Ir(2)-C(54)	89.96(15)	
C(38)-Ir(2)-N(9)	96.11(14)	

C(54)-Ir(2)-N(9)	80.00(14)	
C(38)-Ir(2)-N(7)	80.02(14)	
C(54)-Ir(2)-N(7)	93.21(14)	
N(9)-Ir(2)-N(7)	172.23(11)	
C(38)-Ir(2)-S(1)	98.97(10)	
C(54)-Ir(2)-S(1)	170.71(11)	
N(9)-Ir(2)-S(1)	96.42(9)	
N(7)-Ir(2)-S(1)	90.85(9)	
C(38)-Ir(2)-S(2)	170.01(10)	
C(54)-Ir(2)-S(2)	99.75(11)	
N(9)-Ir(2)-S(2)	87.94(9)	
N(7)-Ir(2)-S(2)	96.98(9)	
S(1)-Ir(2)-S(2)	71.44(3)	

3. Life time of Ir(dpp)₂(dta)

Fig.S8 Cyclic voltammogram of ferrocene/ferricenium (Fc/Fc+)

Fig.S9 Cyclic voltammogram of Ir(dpp)2(dta)

5. Data of Photophysical properties

Table S3. Data of Photophysical properties of Ir(dpp)₂(dta).

	DCM solution		1% PMMA film		Powder
	$\lambda_{\max, abs} (nm)$	λ_{PL} (nm)	τ(us)	$arPhi_{ ext{film}}$	$arPhi_{ ext{power}}$
(dpp) ₂ Ir(dta)	304, 398, 503	575	0.90	86%	14%

6. PL spectra for different doping concentrations

Fig.S10 PL spectra for different doping concentrations

7. The data of Ir(dpp)2dta doping density from 1% to 10%

Fig.S11 Electroluminescence spectra of the devices at different density

Fig.S12 Electroluminescence spectra of the devices at different voltage

8. CIE plot of Ir(dpp)₂(dta)

Fig.S13 CIE plot of Ir(dpp)₂(dta)

9. External quantum efficiency–Luminance of the devices

Fig.S14 External quantum efficiency-Luminance of the devices