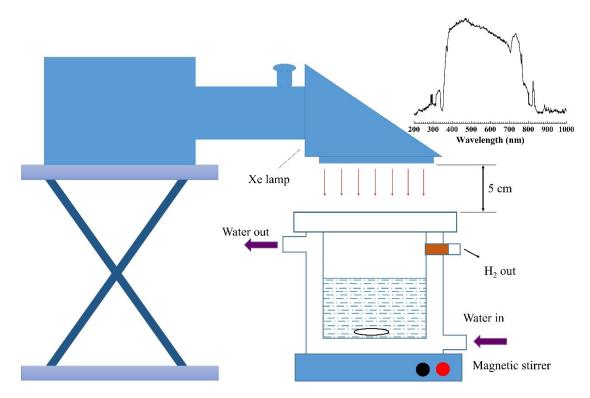
Supporting Information

For

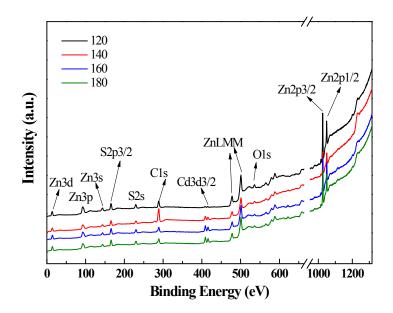

"Hydrothermal synthesis of uniform sub-micrometer-spherical Zn_{0.83}Cd_{0.17}S photocatalyst with high activity for photocatalytic hydrogen production"

Submitted by

Zhongping Yao, Yaqiong He, Qixing Xia, Han Wei, Zhaohua Jiang School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001, PR China

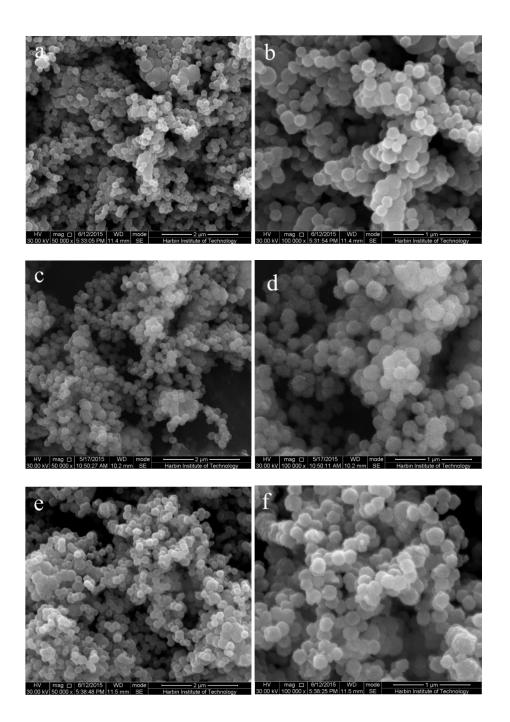
Corresponding author: Zhongping Yao

Email: yaozhongping@hit.edu.cn



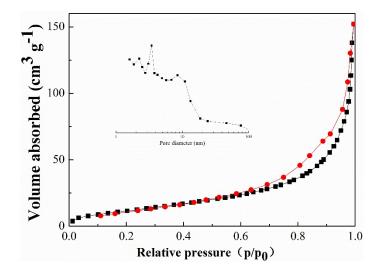
SI Fig.1 is the schematic diagram of the experimental set-up

SI Fig.1. The schematic diagram of the experimental set-up


As showed in the SI Fig.1, the photocatalytic reaction was conducted in a closed glass circulation system, the entire reaction process was irradiated using a 300 W Xe lamp (PLS-SXE300, Perfectlight, China). The $Zn_{0.83}Cd_{0.17}S$ photocatalyst (0.05 g) was dispersed in a 200 ml aqueous solution containing 0.35 M Na₂S and 0.25 M Na₂SO₃ in a 250 ml quartz reaction cell which was 5 cm away from the Xe lamp. The solution was continuously stirred with a magnetic stirrer.

SI Fig.2. The spectrum of the overall survey scan of $Zn_{0.83}Cd_{0.17}S$ samples

SI Fig.2 shows spectrum of the overall survey scan of $Zn_{0.83}Cd_{0.17}S$ samples. All the spectra of samples indicate the presence of Zn, Cd, and S along with O and C.


SI Fig.3. The SEM images of $Zn_{0.83}Cd_{0.17}S$ prepared at different temperatures. a and b: 120°C; c and d: 140°C; e and f: 160°C and g and h: 180°C

SI Fig.3 shows all samples consisted of nano-spheres with different sizes.

SI Fig.4. Nitrogen adsorption –desorption isotherm and the corresponding pore-size distribution curve (inset) of $Zn_{0.83}Cd_{0.17}S$ prepared at 160°C

 N_2 adsorption/desorption investigations were carried out to study the textural properties of $Zn_{0.83}Cd_{0.17}S$. The adsorption/desorption isotherm of the representative $Zn_{0.83}Cd_{0.17}S$ sample prepared at 160 °C for 12 hours showed a type IV isotherm with a clear hysteresis loop. Barrett-Joyner-Helenda (BJH) analysis revealed the sample possessed of an average pore diameter of 2-9 nm with the BET specific surface of 47.36 m^2/g .