Supporting Information for:

Multimetallic Catalysts of RuO₂-CuO-Cs₂O-TiO₂/SiO₂ for Direct

Gas-Phase Epoxidation of Propylene to Propylene Oxide

T. Chukeaw, A. Seubsai,* P. Phon-in, K. Charoen, T. Witoon, W. Donphai, P. Parpainainar, M. Chareonpanich, D. Noon, B. Zohour and S. Senkan

		Facto	or			Response	
Std.	A: Temperature reactions (°C)	B: O_2/C_3H_6 (ratio)	C: (O ₂ +C ₃ H ₆)/He (ratio)	D: Total flow rate (cc/min)	PO selectivity (%)	C ₃ H ₆ conversion (%)	PO formation rate (g _{PO} h ⁻¹ kg _{cat} ⁻¹)
1	190	0.7	0.05	50	31.6	0.2	43
2	310	0.7	0.05	50	8.4	9.0	464
3	190	6.7	0.30	50	35.1	0.7	89
4	310	6.7	0.30	50	10.0	33.5	1876
5	250	11.0	0.14	30	21.5	18.6	1572
6	250	2.2	0.19	30	11.7	29.1	3288
7	250	11.0	0.14	70	15.3	30.8	1753
8	250	2.2	0.19	70	9.4	32.7	2895
9	190	3.7	0.16	30	31.9	0.4	89
10	310	3.7	0.16	30	9.3	40.4	2209
11	190	3.7	0.16	70	35.6	0.2	49
12	310	3.7	0.16	70	7.4	43.8	1862
13	250	2.0	0.03	50	26.9	8.3	817
14	250	20.0	0.27	50	12.3	53.9	3050
15	250	0.4	0.08	50	17.2	5.1	796
16	250	4.0	0.33	50	34.8	7.7	2514
17	190	11.0	0.14	50	34.1	0.7	89
18	310	11.0	0.14	50	14.6	51.2	2190
19	190	2.2	0.19	50	34.5	0.3	128
20	310	2.2	0.19	50	8.4	63.6	1767
21	250	0.7	0.05	30	18.6	7.1	866
22	250	6.7	0.30	30	28.5	13.1	2265
23	250	0.7	0.05	70	18.0	5.9	668
24	250	6.7	0.30	70	20.0	16.9	1908
25	250	3.7	0.16	50	9.4	39.0	2433
26	250	3.7	0.16	50	11.6	32.2	2479
27	250	3.7	0.16	50	9.7	37.9	2435
28	250	3.7	0.16	50	10.8	34.1	2441
29	250	3.7	0.16	50	10.2	35.5	2408

Table S1 Detailed experiments for the Box–Behnken designs of experiment

Fig. S1 a) – f) Contour plots showing % PO selectivity from all combinations of 4 parameters; a) A vs B, b) A vs C, c) A vs D, d) B vs C, e) B vs D, f) C vs D; where A = Reaction temperature (190–310 °C), B = O_2/C_3H_6 ratio (0.4–20), C = ($O_2+C_3H_6$)/He ratio (0.03–0.33), and D = total feed gas flow rate (30–70 cc/min by using He as balance gas)]. When two parameters were studied, A, B, C and/or D were fixed at 219 °C, 4.1, 0.32, and/or 70 cc/min, respectively.

Fig. S2 Contour plots showing % propylene conversion from all combinations of 4 parameters; a) A vs B, b) A vs C, c) A vs D, d) B vs C, e) B vs D, f) C vs D; where A = Reaction temperature (190–310 °C), B = O_2/C_3H_6 ratio (0.4–20), C = ($O_2+C_3H_6$)/He ratio (0.03–0.33), and D = total feed gas flow rate (30–70 cc/min by using He as balance gas)]. When two parameters were studied, A, B, C and/or D were fixed at 310 °C, 17.4, 0.23, and/or 57 cc/min, respectively.

Table S2 Predicted and experimental values of optimal PO selectivity and PO formation rate obtained from the Box–Behnken designs of experiment.

Optimization	Temperature (°C)	O_2/C_3H_6 (ratio)	(O ₂ +C ₃ H ₆)/He Total flow ratio) (cc/min)	Total flow rate	PO selectivity (%)		C_3H_6 conversion (%)		PO formation rate (g _{PO} h ⁻¹ kg _{cat} ⁻¹)	
					Predict	Test	Predict	Test	Predict	Test
PO Selectivity	219	4.1	0.32	70	37.3	38.4	-	1.3	-	573
PO formation rate	272	3.1	0.26	34	-	7.1	-	40.1	2973	3015

Fig. S3 PO formation *vs* PO selectivity of various catalysts for the direct gas-phase epoxidation of propylene to PO reported in literature from 2005 – present.

Table S3 Catalysts reported in literature for catalysts the direct gas-phase epoxidation of propylene to PO reported in literature from 2005 – present.

No.	Catalyst	Reactions	Temperature (°C)	Pressure (atm)	C_3H_6 conversion (%)	PO selectivity (%)	PO formation rate (g _{PO} h ⁻¹ kg _{cat} ⁻¹)	Ref.
1	Cu/SiO ₂	Epoxidation	225	1	0.3	53.0	1	1
2	K⁺–Cu/SBA–15	Epoxidation	350	1	2.2	24.0	1	2
3	(KAc)–Cu/SiO ₂	Epoxidation	325	1	0.3	19.1	145	3
4	K–Cu/m–SiO ₂	Epoxidation	350	1	2.9	20.5	90	4
5	RuO ₂ -CuO-NaCl/SiO ₂	Epoxidation	270	1	20.0	50.0	153	5
6	d–Cu ₂ O	Epoxidation	250	1	0.8	13.0	3	6
7	Ti-MoO ₃ -Bi ₂ SiO ₅ /SiO ₂	Epoxidation	400	1.4	20.5	64.7	383	7
8	Au/TS-1	Hydroperoxide	200	1	10.0	76.0	134	8
9	Au/TS-1(36)	Hydroperoxide	200	n/a	8.8	81.0	116	9
10	AuBa(NO ₂) ₃ /Ti-SiO ₂	Hydroperoxide	150	1	8.5	91.0	81	10
11	0.33Au/PCTS-1(28)	Hydroperoxide	200	n/a	9.7	87.0	132	11
12	Au–Ba/Ti–TUD	Hydroperoxide	150	1	2.1	76.8	29	12
13	Au/TS-1	Hydroperoxide	212	n/a	16.0	65.0	200	13
14	0.09Au/TS-1(170)	Hydroperoxide	200	1	6.7	78.1	95	14
15	0.14Au/0.04Ge-TS-1(100)	Hydroperoxide	170	1	4.0	91.0	66	15
16	Au/TS-1(48) -Na1	Hydroperoxide	200	n/a	7.4	85.0	119	16
17	Ba(NO ₂) ₃ -Au/Ti-MCM-41	Hydroperoxide	150	n/a	5.4	74.2	73	17
18	VO _x Cu	Hydroperoxide	230	1	2.7	16.0	13	18

19	Au–Ti(0.05) –M	Hydroperoxide	150	1	2.2	62.0	52	19
20	Au/TS-1(35)	Hydroperoxide	300	1	14.6	74.0	164	20
21	0.2Au/TS-1-Na	Hydroperoxide	200	n/a	8.3	84.0	127	21
22	Au-00	Hydroperoxide	200	1	4.8	66.0	57	22
23	Au/TS-1 ₃₅ /Si/1.0%	Hydroperoxide	300	1	12.6	70.0	83	23
24	0.081Au/TS-1(127)	Hydroperoxide	200	1	5.1	96.0	160	24
25	0.57Au/0.4In-TS-1	Hydroperoxide	170	1	3.8	81.0	56	25
26	0.05–Au/Ti–SiO ₂ –1L	Hydroperoxide	200	1	2.7	89.4	63	26
27	0.16Au/TS-1(121)Cs	Hydroperoxide	200	1	11.4	88.8	320	27
28	0.08Au/NTS-1-10	Hydroperoxide	150	1	6.8	84.4	105	28
29	Au/TS-1	Hydroperoxide	200	1	n/a	83.0	125	29
30	0.04Au/U-TS-1(119)	Hydroperoxide	200	1	3.2	41.2	98	30
31	0.13 wt% Au/TS-1-B(40)	Hydroperoxide	200	1	n/a	83.0	158	31
32	0.5Au/TS-1-15 g/L	Hydroperoxide	300	1	11.5	74.5	141	32
33	4.5Au/A-TiYNU-1	Hydroperoxide	225	1	3.3	59.3	30	33
34	V-Ti/MCM-41	Photo reaction	50	1	24.4	46.8	7	34
35	Au/TS-1	Photo reaction	50	1	56.1	54.3	30	35
36	V-Ti/MCM-41	Photo reaction	50	1	n/a	49.3	29	36
37	V _{0.2} Ti _{0.3} /MCM-41	Photo reaction	50	1	0.2	48.0	37	37
	RuO ₂ -CuO-Cs ₂ O-TiO ₂ /SiO ₂	Epoxidation	219	1	1.3	38.4	573	This work
	RuO ₂ -CuO-Cs ₂ O-TiO ₂ /SiO ₂	Epoxidation	273	1	40.1	7.1	3015	This work

* n/a = not available

	PO selectivity (%)		AC selectivity		C ₃ H ₆ conversion		PO formation rate	
Run no.				(%)		(%)		$(g_{PO} h^{-1} kg_{cat}^{-1})$
	W/O	W/	W/O	W/	W/O	W/	W/O	W/
1	7.1	-	0.5	-	40.1	-	3015	-
2	10.5	7.6	0.8	0.7	18.8	34.9	2202	3010
3	15.0	7.7	1.2	0.5	6.9	34.1	1156	2997
4	12.5	7.7	1.2	0.7	6.7	34.0	935	2984
5	11.7	7.5	1.4	0.3	5.6	34.7	732	2965
6	10.8	8.0	1.4	0.3	5.8	32.5	696	2971

Table S4 Multiple test runs of the optimal RuO_2 -CuO-Cs₂O-TiO₂/SiO₂ catalyst with (w/) and without (w/o) treating with fumed HCl under the optimal operating condition for PO formation rate.

Fig. S4 SEM-EDS showing Cl of the optimal RuO_2 -CuO-Cs₂O-TiO₂/SiO₂ catalyst; fresh catalyst, after 6 runs of testing, and after treated by fumed HCl.

References:

- 1 O. P. H. Vaughan, G. Kyriakou, N. Macleod, M. Tikhov and R. M. Lambert, *Journal of Catalysis*, 2005, **236**, 401-404.
- 2 H. Chu, L. Yang, Q. H. Zhang and Y. Wang, *Journal of Catalysis*, 2006, **241**, 225-228.
- 3 W. G. Su, S. G. Wang, P. L. Ying, Z. C. Feng and C. Li, *Journal of Catalysis*, 2009, **268**, 165-174.
- 4 D. Duzenli, E. Seker, S. Senkan and I. Onal, *Catalysis Letters*, 2012, **142**, 1234-1243.
- 5 A. Seubsai, B. Zohour, D. Noon and S. Senkan, *ChemCatChem*, 2014, **6**, 1215-1219.
- 6 Q. Hua, T. Cao, X. K. Gu, J. Lu, Z. Jiang, X. Pan, L. Luo, W.-X. Li and W. Huang, *Angewandte Chemie International Edition*, 2014, **53**, 4856-4861.
- 7 Y. Lei, X. Chen, C. Xu, Z. Dai and K. Wei, *Journal of Catalysis*, 2015, **321**, 100-112.
- 8 L. Cumaranatunge and W. N. Delgass, *Journal of Catalysis*, 2005, **232**, 38-42.
- 9 B. Taylor, J. Lauterbach and W. N. Delgass, *Applied Catalysis A: General*, 2005, **291**, 188-198.
- 10 B. Chowdhitry, J. J. Bravo-Suarez, M. Date, S. Tsubota and M. Haruta, *Angewandte Chemie-International Edition*, 2006, **45**, 412-415.
- 11 B. Taylor, J. Lauterbach and W. N. Delgass, *Catalysis Today*, 2007, **123**, 50-58.
- 12 J. Lu, X. Zhang, J. J. Bravo-Suárez, K. K. Bando, T. Fujitani and S. T. Oyama, *Journal of Catalysis*, 2007, **250**, 350-359.
- 13 S. T. Oyama, X. Zhang, J. Lu, Y. Gu and T. Fujitani, *Journal of Catalysis*, 2008, **257**, 1-4.
- 14 J. Q. Lu, X. M. Zhang, J. J. Bravo-Suarez, T. Fujitani and S. T. Oyama, *Catalysis Today*, 2009, **147**, 186-195.
- 15 T. Liu, P. Hacarlioglu, S. T. Oyama, M. F. Luo, X. R. Pan and J. Q. Lu, *Journal of Catalysis*, 2009, **267**, 202-206.
- 16 J. H. Huang, T. Takei, T. Akita, H. Ohashi and M. Haruta, *Applied Catalysis B: Environmental*, 2010, **95**, 430-438.
- 17 L. Y. Wu, Y. Huan, Z. X. Ming and S. J. Shuan, *Acta Physico-Chimica Sinica*, 2010, **26**, 1585-1592.
- 18 L. J. Yang, J. L. He, Q. H. Zhang and Y. Wang, *Journal of Catalysis*, 2010, **276**, 76-84.
- 19 C. H. Liu, Y. Guan, E. J. M. Hensen, J. F. Lee and C. M. Yang, *Journal of Catalysis*, 2011, **282**, 94-102.
- 20 M. Du, G. Zhan, X. Yang, H. Wang, W. Lin, Y. Zhou, J. Zhu, L. Lin, J. Huang, D. Sun, L. Jia and Q. Li, *Journal of Catalysis*, 2011, **283**, 192-201.
- 21 J. Huang, E. Lima, T. Akita, A. Guzmain, C. Qi, T. Takei and M. Haruta, *Journal of Catalysis*, 2011, **278**, 8-15.
- 22 J. Gaudet, K. K. Bando, Z. Song, T. Fujitani, W. Zhang, D. S. Su and S. T. Oyama, *Journal of Catalysis*, 2011, **280**, 40-49.
- 23 G. Zhan, M. Du, J. Huang and Q. Li, *Catalysis Communications*, 2011, **12**, 830-833.
- 24 W. S. Lee, M. C. Akatay, E. A. Stach, F. H. Ribeiro and W. Nicholas Delgass, *Journal of Catalysis*, 2012, **287**, 178-189.
- J. Q. Lu, N. Li, X. R. Pan, C. Zhang and M. F. Luo, *Catalysis Communications*, 2012, **28**, 179-182.
- 26 J. Chen, S. J. A. Halin, E. A. Pidko, M. W. G. M. Verhoeven, D. M. P. Ferrandez, E. J. M. Hensen, J. C. Schouten and T. A. Nijhuis, *ChemCatChem*, 2013, **5**, 467-478.
- 27 W. S. Lee, M. Cem Akatay, E. A. Stach, F. H. Ribeiro and W. Nicholas Delgass, *Journal of Catalysis*, 2013, **308**, 98-113.
- 28 Y. Liu, X. Zhang and J. Suo, *Chinese Journal of Catalysis*, 2013, **34**, 336-340.
- 29 X. Feng, X. Duan, G. Qian, X. Zhou, D. Chen and W. Yuan, *Applied Catalysis B: Environmental*, 2014, **150–151**, 396-401.
- 30 W. S. Lee, M. C. Akatay, E. A. Stach, F. H. Ribeiro and W. N. Delgass, *Journal of Catalysis*, 2014, **313**, 104-112.

- 31 X. Feng, X. Duan, J. Yang, G. Qian, X. Zhou, D. Chen and W. Yuan, *Chemical Engineering Journal*, 2015, **278**, 234-239.
- 32 M. Du, J. Huang, D. Sun and Q. Li, *Applied Surface Science*, 2016, **366**, 292-298.
- 33 F. Jin, Y. Wu, S. Liu, T. H. Lin, J. F. Lee and S. Cheng, *Catalysis Today*, 2016, **264**, 98-108.
- V. H. Nguyen, H. Y. Chan, J. C. S. Wu and H. Bai, *Chemical Engineering Journal*, 2012, **179**, 285-294.
- 35 V. H. Nguyen, H. Y. Chan and J. C. S. Wu, *Journal of Chemical Sciences*, 2013, **125**, 859-867.
- 36 V. H. Nguyen, S. D. Lin, J. C. S. Wu and H. Bai, *Catalysis Today*, 2015, **245**, 186-191.
- 37 V. H. Nguyen, S. D. Lin and J. C. S. Wu, *Journal of Catalysis*, 2015, **331**, 217-227.