Electronic Supplementary Information

Synthesis of Ti³⁺ self-doped TiO₂ nanocrystals based on Le Chatelier's principle and their application in solar light photocatalysis

- Maoqin Qiu^{1,2}, Yuan Tian^{1,2}, Zhangxian Chen^{1,2}*, Zeheng Yang^{1,2}*, Wenming Li^{1,2}, Kai Wang^{1,2}, Lei Wang^{1,2}, Kun Wang^{1,2}, Weixin Zhang^{1,2}*
- 1 School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China 230009
- 2 Anhui Key Laboratory of Controllable Chemical Reaction & Material Chemical Engineering, Hefei, China 230009

Fig. S1 (a) SEM and (b) TEM images of the pristine TiO_2 (r=0) sample synthesized without using $(NH_4)_2TiF_6$.

Fig. S2 XPS spectra of Ti2p and O1s for pristine TiO₂ (r=0) sample.

Fig. S3 Raman spectrum of pristine TiO₂ (r=0) sample.

Fig. S4 The relative concentrations of MB solution as a function of irradiation time with different TiO_2 nanocrystals as the photocatalysts under natural solar irradiation and UV irradiation, respectively.

Fig. S5 Life recycle performance of Ti^{3+} self-doped TiO_2 nanocrystals (r=1:80) under simulated visible light irradiation.

Fig. S6 The EPR spectrum of Ti^{3+} self-doped TiO_2 nanocrystals after fifth run of photocatalytic reactions.