Isomorphous substitution induced ionothermal synthesis of magnesium aluminophosphate zeolite in fluoride-free media

Ying Wei, *a, b Ling Zhanga, c and Zhijian Tian*a

^a Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. E-mail: tianz@dicp.ac.cn

^b Chemical Engineering Department, Beijing University of Chemical Technology, Beijing 100029, China. E-mail: weiying@mail.buct.edu.cn

^c Syncat@Beijing, Synfuels China Co. Ltd, Beijing 101400, China.

Supplementary Information

Characterizations

Chemical composition analysis was determined with a Philips Magix X-ray fluorescence spectrometer. Powder X-ray diffraction (XRD) analysis of the assynthesized samples are recorded on a PANalytical X'Pert PRO diffractometer fitted with Cu K α radiation ($\lambda = 1.5418$ Å) operating at 40 mA and 40 kV. The Scanning electron microscopy (SEM) was performed on a Hitachi S4800 field-emission scanning electron microscopes. ³¹P and ²⁷Al magic angle spinning (MAS) and ¹³C cross polarization-magic angle spinning (CP-MAS) nuclear magnetic resonance (NMR) measurements were analyzed on a Varian Infinityplus-400 spectrometer. The acidity of the sample was characterized by using ammonia temperature programmed desorption (NH₃-TPD) with a Micromeritics Autochem 2910 automated catalyst characterization system. Thermal gravimetric/Differential scanning calorimetry (TG/DSC) was carried out under air atmosphere, using a NETZSCH STA 409PC thermoanalyser from room-temperature to 800 °C. The sample weight was 15 mg, and the heating rate was 10 °C/min, with an air flow rate of 30 ml/min.

Figure S1. XRD pattern of MgAPOs with AFI and AEL structures and the reference XRD patterns of AlPO₄-11(AEL) and AlPO₄-5 (AFI).

Figure S2. XRD pattern of MgAPOs with ATS and AEL structures and the reference XRD patterns of AlPO₄-11(AEL) and MAPO-36 (ATS).

Table S1 Product structure and the MgO/Al₂O₃ ratio for the samples synthesized with different magnesium content in the initial mixture. Initial mixture composition (molar ratio): $1 \text{ Al}_2\text{O}_3$: $3 \text{ P}_2\text{O}_5$: x MgO : 80BMIMBrs, crystallization temperature : 200°C, crystallization time: 1 day.

Sample	x	Structure	MgO/Al ₂ O ₃
			in the products*
А	0.1	AEL	0.042
В	0.2	AFI+AEL	0.071
С	0.3	AFI+AEL	0.094
D	0.4	AFI+AEL	0.108
Е	0.5	AFI+AEL	0.141

* Determined by X-ray fluorescence spectrometer element analysis.

Figure S3. XRD patterns of the samples A-E synthesized with different magnesium concentration in the initial mixture.

Figure S4. SEM images of the samples A-E synthesized with different magnesium concentration in the initial mixture.

Figure S5. TG profiles of the samples A-E synthesized with different magnesium concentration in the initial mixture. Note: The weight loss increase with the magnesium content in the framework, for sample E possibly some extra-framework magnesium exists.