SUPPORTING INFORMATION:

Structural, Kinetic, and DFT Studies of the Transfer Hydrogenation of Ketones Mediated by (Pyrazole)pyridine Iron(II) and Nickel(II) Complexes

Makhosazane N. Magubane,^a George S. Nyamato,^a Stephen O. Ojwach,^{*,a} and Orde Q. Munro^{*,b}

^aSchool of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, Private Bag X01 Scottsville, 3209, South Africa. E-mail: OjwachS@ukzn.ac.za. ^bSchool of Chemistry, University of the Witwatersrand, PO WITS 2050, Johannesburg, South Africa. E-mail: Orde.Munro@wits.ac.za.

The supporting information contained herein relates to the following compounds:

Figure S1: Low-resolution ESI-MS spectrum for complex **5**. Fragment assignments are indicated for the major peaks in the spectrum. The parent ion (MF, $C_{17}H_{21}Cl_2N_5Ni$; FW, 424.9809914; M⁺, 423.051653 Da, and [M+H]⁺, 424.059478 Da) is absent due to the loss of one chloride ligand during ionization.

Figure S2. (a) Molecular structure of **4a**·**H**₂**O** drawn with 50% probability ellipsoids and selected atom labels. H atoms on the cation are omitted for clarity; the classical H-bond (and distance in Å) involving the bromide ion and solvate water is indicated by a dashed line. Bond lengths (Å): Ni1–N1, 2.1300(10); Ni1–N3, 2.1284(10); Ni1–N5, 2.1162(10); Ni1–N6, 2.1129(10); Ni1–N8, 2.1350(10); Ni1–N10, 2.1364(10). Bond angles (°): N1–Ni1-N3, 87.06(4); N5–Ni1–N3, 86.51(4); N6–Ni1–N8, 86.46(4); N8–Ni1–N10, 86.85(4); N1–Ni1–N6, 86.48(4); N6–Ni1–N10, 173.29(4); N3–Ni1–N8, 179.47(4). (b) Illustration of the short intramolecular contacts in the structure of **4a**·**H**₂**O** (thin blue dashed lines). The short intramolecular contacts discussed in the main text are highlighted in thick orange dashed lines: H1C…C28, 2.81 Å; H1A…N6, 2.56 Å; H1A…C19, 2.70 Å.

Comments on the Structure of $4a \cdot H_2O$. From the molecular structure of $4a \cdot H_2O$, the geometry around the Ni metal centre may be regarded as distorted octahedral since the bond angles for N1-Ni-N3 of 87.06° and N6-Ni-N8 of 86.46° deviate significantly from 90°. Similarly, the angle for N1–Ni–N5 of 173.53° is markedly less than 180° (expected for octahedral structures). The Ni-N_{pyrazole} distances Ni-N1 [2.1300(10) Å] and Ni-N5 [2.1162(10) Å] are, within experimental error, equivalent, confirming the symmetrical nature of L2. The average Ni-N_{pyrazole} $(Ni-N_{pz})$ bond distance determined here for 4a, 2.13(1) Å, is somewhat longer than the equivalent mean distance reported elsewhere for the related complexes coordinated by the methyl-free analogue of L2, L2': $[NiCl(L2')(OH_2)_2]Cl H_2O, Ni-N_{pz} = 2.026(1) Å, and <math>[Ni(L2')_2](ClO_4)_2, Ni-N_{pz} = 2.076(1) Å, where L2' = 2,6-10$ bis(1H-pyrazol-1-ylmethyl)pyridine.¹ The elongation of the Ni-N_{pz} bonds in 4a reflects adjustment of the coordination geometry to compensate for short intramolecular contacts between the inwardly-directed pyrazolyl methyl groups on one ligand with the pyridine and pyrazole rings of the counterpart ligand in the complex (Figure S2). For example, the contact distances between the H atoms attached to C1 and the neighbouring ligand's pyridine and pyrazole rings measure 2.81 (C1-H1C···C28), 2.56 (C1-H1A···N6), and 2.70 Å (C1-H1A···C19); these are between 0.1 and 0.2 Å shorter than the sum of the van der Waals radii of carbon and hydrogen. In effect, short intramolecular nonbonded interactions push the pyrazole moieties of L2 out from the metal centre relative to the interaction geometry observed for the un-substituted parent ligand, L2'. The conformation of the complex, particularly the manner in which the twisted nonplanar ligands chelate and enwrap the metal ion is concerned, is such that it has approximate molecular C_2 symmetry. Consequently, 4a is conformationally similar to the simpler derivative $[Ni(L2')_2](ClO_4)_2$ reported by Watson *et al.* in 1987.¹ (This perchlorate salt has exact C_2 molecular symmetry by virtue of the cation's location on a crystallographic twofold axis in the space group $P2_12_12_1$; in contrast, the cation of **4a** has no imposed molecular symmetry.)

The crystal packing in **4a** is such that the cations lie in planes parallel to [1, 1, 0]; the anions are sandwiched roughly between these planes and, in the case of the anion "layer" repeating at half the length of the *c*-axis, the bromide ions form hydrogen-bonded centrosymmetric 4-membered rings involving pairs of water molecules and bromide ions (Figures S3 and S4; Table S1). No intermolecular π - π stacking interactions involving the pyridine or pyrazole rings of the cations exist in the structure of **4a**.

Figure S3: Unit cell packing diagram for $4a \cdot H_2O$ viewed approximately down the *b*-axis. H atoms have been omitted for clarity. Brown and red spheres correspond to the bromide ions and water molecules in the lattice, respectively.

Figure S4: Hydrogen bonding between Br2 and lattice water in the structure of $4a \cdot H_2O$. The symmetry unique interaction distances (Å) are indicated.

Figure S5: (a) Molecular structure of **6a** drawn with 50% probability ellipsoids and selected atom labels. Two solvent molecules (CH₂Cl₂) and all of the H atoms are omitted for clarity; only the major components of the two disordered [FeCl₄]⁻ counter-ions are shown. Bond lengths (Å): Fe–N1, 2.211(8); Fe–N5, 2.208(8); Fe–N3, 2.273(7); Fe–N8, 2.255(8); Fe–N6, 2.226(8); Fe–N10, 2.198(8). Bond angles (°): N1–Fe1–N3, 84.9(3); N5–Fe1–N3, 84.3(3); N6–Fe1–N8, 83.8(3); N8–Fe1–N10 85.6(3); N1–Fe1–N6, 87.9(3); N6–Fe1–N10, 169.3(3); N1–Fe1–N5, 169.2(3); N3–Fe1–N8, 178.0(3). (b) Overlay of the X-ray structure of the cation in **6** with the six available X-ray structures of the same cation from different salts in the literature (CSD² reference codes: NIJMAU, NIJLOH, NIJLIB, ETONOR, ETONIL, and ETONEH). The similarity indices range from 0.94–0.98 for all non-H atoms. (Atomic coordinates were transformed by inversion where necessary to give the same enantiomorph for least-squares fitting.)

Comment on Figure S5. The crystal structure of **6a** (Figure S5a), formulated as $[Fe(L2)_2][FeCl_4]_2 \cdot CH_2Cl_2$, is the only tetrachloroferrate(III) salt of the $[Fe(L2)_2]^{2+}$ cation that has been structurally elucidated. As noted in the Experimental Methods section, the presence of the $[Fe^{III}Cl_4]^-$ anions reflects partial oxidation of ferrous chloride during chelation of Fe(II) by the tridentate ligand and, presumably, a more favourable lattice energy for crystallization of $[Fe(L2)_2][FeCl_4]_2$ relative to the simpler, alternative salt from this system, namely $[Fe(L2)_2]Cl_2$. The latter salt has not yet been reported despite the fact that several perchlorates,³ a tetraphenylborate,^{3a} and a hexafluorophosphate^{3a} salt of the $[Fe(L2)_2]^{2+}$ cation are known. The molecular structure of **6a** is similar to that of the Ni(II) derivative **4a**; the two tridentate ligands adopt the same wave-like conformation about the distorted octahedral metal centre. However, the distortion from a regular octahedral coordination geometry is more pronounced in **6a**, as evidenced by the rather acute mean N_{pz}–Fe–N_{py} bond angle of 84.7(8)° in the complex (where pz = pyrazole and py = pyridine). The mean Fe–N_{pz} and Fe–N_{pz} to distances measure 2.210(12) and 2.264(12) Å, respectively, and are in agreement with the ranges (2.131–2.245, Fe–N_{pz}; 2.191–2.251, Fe–N_{py}) observed

for each bond class from the known X-ray structures of the cation present in six different salts (Figure S5b). The Fe–N_{pz} bond to the metal ion is slightly shorter than the Fe–N_{py} bond, in contrast to the bonding about the Ni(II) ion of **4a**, and likely reflects the fact that the ionic radius of high-spin Fe(II) at 92 pm is 11% larger than that of Ni(II) (83 pm)⁴ such that the intrinsic geometric differences of the two N-donor atom types is somewhat amplified for the iron chelate. It is noteworthy in this regard that the C–N_{py}–C bond angle (ca. 117°) is significantly wider than the N–N_{pz}–C bond angle (ca. 105°) and would account for a substantial part of the observed elongation of the Fe–N_{py} bond relative to the Fe–N_{pz} bond (all other factors being equivalent).

Figure S5b shows a least-squares superposition of the six known X-ray structures of $[Fe(L_2)_2]^{2+}$ in the literature with that of **6a**. The wave-like conformation of the tridentate ligand is essentially constant for all of the crystallographically characterized salts. The two chelating ligands are clearly relatively inflexible with minor conformational perturbations in the pyrazole ring orientations caused by minor rotations about the Fe-N_{pz} bonds and crystal packing interactions involving the methyl substituents on the rings. Interestingly, the chelate ring arrangements and spiral-like ligand conformations of **6a** yield a chiral molecular structure for the cation (the enantiomers are non-superimposable). However, the synthesis of the compound is not enantioselective and therefore the reaction affords a racemic mixture. Crystals of **6a** (and **4a** for similar reasons) are solid racemates comprising an equal number of enantiomorphs related by centres of inversion in the lattice. (It would be interesting from a crystallographic perspective to see whether use of an enantiopure chiral anion could permit resolution of the enantiomorphs upon crystallization of the racemate.)

Figure S6: Short nonbonded contact between the pyrazole ring of one cation and the pyridine ring of the neighbouring cation in 8·2H₂O. The interaction evidently tips the pyrazole ring below the mean plane of the chelating ligand and is at least partly responsible for the nonplanar conformation of the ligand. Symmetry codes: [i] x, y, z; [ii] $\frac{1}{2} + x$, $\frac{1}{2} - y$, $\frac{1}{2} + z$.

Figure S7: Comparison of the DFT-calculated structures (UHSEH1PBE⁵/6-311G(d,p)⁶) of **6**, **6b**, **6c**, and **3** in a 2-propanol solvent continuum (SCRF-PCM method)⁷. Complexes **6b** and **6c** are configurational isomers of **6** in which one pyrazole ring is dissociated from the metal ion to give a more open Fe(II) coordination sphere similar to that of **3**. Thermochemical analysis of **6**–**6c** at 80 °C indicates that the ΔG_{rel} values for isomers **6b** and **6c** are 16.64 and 19.46 kJ mol⁻¹ relative to **6**, respectively, despite positive increases in entropy, ΔS_{rel} , of 35.38 and 31.74 J K⁻¹ mol⁻¹ for the respective complexes. From the molecular partition function (Boltzmann distribution) at 353.15 K, the solution populations of isomers **6b** and **6c** in equilibrium with **6** would amount to only 0.68% and 0.26% of the distribution, excluding either of these configurational isomers as being alternative solution species for **6** that might account for the similar k_{obs} values measured for **3** and **6** (Table 3, main text). Selected bond distances (Å) and angles (°) are indicated.

Figure S8: DFT-calculated geometries [UHSEH1PBE/6-311G(d,p) level of theory; 2-propanol solvent continuum] of the active Ni(II) precatalysts 1 (C_1 symmetry) and 4 (C_2 symmetry) illustrating the different degrees of steric hindrance about the metal centre. The upper views show the optimized geometries as bond cylinder models with selected atom labels, bond distances (Å) and bond angles (°); the lower views depict the structures rendered with van der Waals radii for the atoms.

Figure S9: Comparison (least-squares fit overlay) of the DFT-calculated geometry of **1** with the X-ray structure of the *t*-butyl substituted analogue (CSD code BOXMAD;⁸ molecule 1 in the asymmetric unit). The similarity index of the fit is 0.914; selected bond lengths (Å) and bond angles (°) are listed. H atoms have been omitted from the fit and for clarity. Note how the closest *t*-Bu group of the X-ray structure distorts the coordination geometry of the metal ion (especially the closest bromide ion) due to steric repulsion. The remainder of the structure reflects good agreement between the DFT-calculated and experimental geometries.

Figure S10: Comparison (least-squares fit overlay) of the DFT-calculated geometry of **9** [UHSEH1PBE/6-311G(d,p) level of theory (C_1 symmetry); 2-propanol solvent continuum] with the X-ray structure of the complex (CSD code LUYLUM)⁹. The root mean square (RMS) difference of the fit is 0.0792 Å; selected bond lengths (Å) and bond angles (°) are listed. H atoms have been omitted from the fit and for clarity. Note: the Fe–Cl bonds in the C_1 -symmetry DFT-calculated structure are inequivalent, measuring 2.33 and 2.44 Å; the mean distance is thus 2.39(5) Å.

Figure S11: Plots of the percentage conversion to product after 6 h for the TH of acetophenone as a function of (a) the M-X distance and (b) the equivalent cone angle, ECA, of the ligand in complexes 1–9. The straight line is the best-fit linear regression curve in each graph. Notably, no significant linear correlation exists in either case.

Compound	Fe-N _{py} (Å)	Fe-N _{pz} (Å)	Fe–Cl (Å)	Fe–O (Å)	Fe–H (Å)	N _{py} -Fe-Cl (°)	N _{py} -Fe-X (°)*
9	2.16	2.16	2.39(5)	-	-	126.5	124.7
9a	2.16	2.18	2.49	1.86	-	126.8	117.3
9b	2.22	2.20	2.55	2.34	1.72	89.7	79.1
9c	2.22	2.19	2.50	-	1.69	97.6	158.6
9d	2.18	2.16	2.49	1.87	-	130.5	118.9

X = Cl, O, or H.

Figure S12: *Postulated* catalytic cycle for compound **9** in isopropyl alcohol. DFT-calculated structures at the UHSE1HPBE⁵/6-311G(d,p)⁶ level of theory in a 2-propanol solvent continuum (PCM method)⁷ for each intermediate are shown along with a list of selected geometrical parameters for key bond distances and angles at the metal centre. The DFT-calculated structures were all true minima (zero imaginary frequencies) on the potential energy surface. The structure of **9c** was modelled by augmenting the UHSE1HPBE functional with the empirical dispersion scheme from the APFD functional.¹⁰

Figure S13: Structure of **9c** with selected NBO¹¹-calculated partial atomic charges (in units of electrons) and intermolecular nonbonded distances (in Å). Selected atom labels are shown. The electrostatic complementarity of the Fe19…C4, Fe19…C3, and H18…C1 interactions is particularly noteworthy as these attractive forces contribute to the stability of the π -adduct.

Figure S14: Depiction of the frontier molecular orbital (FMO) interaction for acetophenone and FeCl(H)(L3) leading to formation of the favourable π -adduct **9c**.

D —Н···A	<i>D</i> —Н	Н…А	D····A	<i>D</i> —H··· <i>A</i>
C1—H1A…N6	0.98	2.55	3.2742 (17)	130
C1—H1 B ···Br1 ⁱ	0.98	3.10	4.0268 (14)	159
C3— $H3$ ···Br1 ⁱ	0.95	3.02	3.8569 (13)	148
C5—H5 B ···Br1 ⁱⁱ	0.98	3.14	4.0986 (14)	167
C6—H6A…N10	0.99	2.36	3.1110 (16)	132
C6—H6 <i>B</i> ···Br1 ⁱⁱⁱ	0.99	2.77	3.7151 (12)	159
C8—H8····Br1 ⁱⁱⁱ	0.95	2.82	3.6987 (12)	155
C10—H10…Br1	0.95	2.92	3.7728 (12)	150
C12—H12A…N6	0.99	2.33	3.0753 (16)	131
C12—H12 <i>B</i> ···Br1	0.99	2.77	3.6986 (12)	157
C17—H17 B ···Br2 ^{iv}	0.98	3.07	4.0029 (13)	159
C17—H17 <i>C</i> ····N8	0.98	2.45	3.2909 (17)	144
C18—H18A…N1	0.98	2.51	3.2509 (18)	132
C20—H20····Br1 ^v	0.95	2.87	3.8127 (13)	173
C23—H23A…N5	0.99	2.37	3.0951 (16)	129
C23—H23 B ····Br2 ^{vi}	0.99	2.80	3.7241 (12)	156
C25—H25····Br2 ^{vi}	0.95	2.87	3.7371 (13)	153
$C27$ — $H27$ ···Br 2^{i}	0.95	2.95	3.7597 (13)	144
C29—H29A…N1	0.99	2.33	3.1006 (16)	134
C29—H29 B ···Br2 ⁱ	0.99	2.72	3.6490 (12)	156
C31—H31…O1 ^{vii}	0.95	2.60	3.4356 (17)	147
C33—H33 <i>C</i> ⋯N3	0.98	2.44	3.3223 (17)	149
O1—H1 <i>D</i> ···Br2	0.80 (3)	2.56 (3)	3.3492 (12)	171 (2)
O1—H1 E ····Br2 ^{iv}	0.78 (3)	2.62 (3)	3.4005 (12)	179 (3)

Table S1. Hydrogen-bond geometry (Å, °) for $4a \cdot H_2O$.

Symmetry codes: (i) x, y-1, z; (ii) -x+1, y-1, -z+1/2; (iii) x-1/2, y-1/2, z; (iv) -x+1, -y+1, -z+1; (v) -x+3/2, y-1/2, -z+1/2; (vi) x+1/2, y-1/2, z; (vii) -x+1/2, -y+1/2, -z+1.

<i>D</i> —Н··· <i>A</i>	<i>D</i> —Н	H····A	D ····A	D —Н···A
O1—H1 <i>A</i> ⋯O1 <i>S</i>	0.82 (2)	1.85 (2)	2.664 (3)	176 (3)
O1—H1 <i>B</i> …Br1	0.81 (2)	2.61 (2)	3.4077 (17)	170 (3)
$O2$ — $H2A$ ····Br 2^{i}	0.81 (2)	2.52 (2)	3.3278 (16)	176 (4)
O2— $H2B$ ····Br1 ⁱ	0.79 (2)	2.70 (2)	3.4824 (15)	173 (4)
O3—H3A····Br1	0.83 (2)	2.45 (2)	3.2695 (16)	168 (3)
O3—H3 <i>B</i> ⋯Br2	0.83 (2)	2.38 (2)	3.2067 (15)	172 (3)
C1—H1 E ···Br1 ⁱ	0.98	3.07	4.001 (2)	158
C3—H3····Br2 ⁱⁱ	0.95	2.89	3.795 (2)	161
C9—H9····Br1 ⁱⁱⁱ	0.95	2.96	3.769 (2)	144
C13—H13…O3 ^{iv}	0.95	2.61	3.121 (3)	114
C15—H15C····Br1	0.98	3.07	4.031 (2)	166
O1S—H1SA····Br1 ⁱ	0.82 (2)	2.60 (2)	3.3642 (19)	157 (4)
O1S— $H1SB$ ····Br2 ^v	0.83 (2)	2.50 (2)	3.3030 (18)	164 (4)

Symmetry codes: (i) x-1/2, y+1/2, z; (ii) x-1, y, z; (iii) x, -y+1, z-1/2; (iv) x+1/2, y+1/2, z; (v) x, -y+1, z+1/2.

Table S3. Hydrogen-bond geometry (Å, °) for 8•2H₂O.

D —Н····A	<i>D</i> —Н	H…A	D ····A	D —H····A
$C1$ — $H1D$ ···· $C12^{i}$	0.98	2.94	3.8022 (11)	148
$C1$ — $H1E$ ··· $C11^{ii}$	0.98	2.99	3.7136 (10)	132
$C3$ — $H3$ ··· $Cl2^i$	0.95	2.76	3.5642 (10)	142
C9—H9····Cl2 ⁱⁱⁱ	0.95	2.85	3.7346 (10)	155
$C7$ — $H7$ ··· $C11^{iv}$	0.95	2.94	3.5723 (10)	125
C11—H11 <i>C</i> ····Cl2 ⁱⁱⁱ	0.98	2.61	3.4592 (10)	145
C15—H15 <i>C</i> ⋯O2	0.98	2.54	3.3710 (13)	142
O2—H2A…Cl1 ⁱⁱ	0.80 (2)	2.47 (2)	3.2409 (8)	161.4 (18)
O1—H1A…Cl2	0.801 (19)	2.357 (19)	3.1535 (8)	173.0 (18)
$O1$ — $H1B$ ···· $Cl2^v$	0.830 (19)	2.274 (19)	3.0962 (8)	170.9 (17)
$O2$ — $H2B$ ···· $Cl2^v$	0.833 (19)	2.26 (2)	3.0863 (8)	170.3 (17)

Symmetry codes: (i) -*x*, -*y*, -*z*+1; (ii) -*x*+1, -*y*, -*z*+2; (iii) x+1/2, -*y*+1/2, *z*+1/2; (iv) x-1/2, -*y*+1/2, *z*-1/2; (v) -*x*+1, -*y*, -*z*+1.

Table S4. Thermochemical analysis (P = 1.0 atm; T = 298.15 K) for ketones and their complexes with the mono(hydrido) adduct of **8**. The DFT-calculated free energies of formation, ΔG_f , of various complexes such as **8c** are given in the second part of the table. Unless otherwise stated, energies are in Hartrees, bond distances in Å, and bond angles in degrees. The relevant reaction scheme pertinent to the free energy calculations is depicted below for the formation of the acetophenone complex **8c**.^{*a,b*}

	acetophenone	2-MeCyHx	pentan-3-one	propanone
Zero-point correction	0.140135	0.18144	0.142772	0.084872
Thermal correction to energy	0.14785	0.189277	0.150575	0.090135
Thermal correction to enthalpy	0.148794	0.190221	0.151519	0.091079
Thermal correction to Gibbs free energy	0.10746	0.149366	0.110869	0.057681
Sum of electronic and zero-point energies	-384.288516	-348.59622	-271.304871	-192.838807
Sum of electronic and thermal energies	-384.280801	-348.588384	-271.297068	-192.833545
Sum of electronic and thermal enthalpies	-384.279857	-348.58744	-271.296124	-192.8326
Sum of electronic and thermal free energies	-384.321191	-348.628295	-271.336774	-192.865998

	[NiClH(L3)(AcPh)], 8c	[NiClH(L3)(2-MeCyHx)]*	[NiClH(L3)(pent)]	[NiClH(L3)(prop)]
Zero-point correction	0.459611	0.500569	0.462271	0.404192
Thermal correction to				
energy	0.490479	0.531698	0.493153	0.432524
Thermal correction to				
enthalpy	0.491423	0.532642	0.494097	0.433468
Thermal correction to				
Gibbs free energy	0.394164	0.43517	0.396512	0.342902
Sum of electronic and				
zero-point energies	-1870.119809	-1834.428174	-1757.135162	-1678.67072
Sum of electronic and				
thermal energies	-1870.088941	-1834.397046	-1757.10428	-1678.642388
Sum of electronic and				
thermal enthalpies	-1870.087996	-1834.396102	-1757.103336	-1678.641444
Sum of electronic and				
thermal free energies	-1870.185256	-1834.493574	-1757.200921	-1678.732011
$\Delta G_{\rm f}$ / Hartrees	0.001948	0.000734	0.001866	0
$\Delta G_{ m f}$ / kJ mol ⁻¹	5.11	(1.93)	4.90	0

^{*a*}Abbreviations: 2-MeCyHx, 2-methylcyclohexanone; AcPh, acetophenone; pent, pentan-3-one; prop, propanone. ^{*b*}DFT simulations were performed at the HSE1HPBE/SDD level of theory in an *i*PrOH solvent continuum. *Structure failed to converge; ΔG_f is an estimate based on a near-converged geometry for the complex.

Compound 1 (HSEH1PBE/6-311g**; 2-propanol PCM):

Gaussian 09 Job keywords:

opt freq=vcd uhseh1pbe/6-311g(d,p)/auto
scrf=(solvent=2-Propanol) pop=npa geom=connectivity

<u>Cartesian Coordinates (.xyz):</u>

C	-1.2458	1.4514	0.2169
C	-2.1266	2.4/54	-0.0969
ĉ	-3 6141	0 8426	-1 0110
č	-2.6801	-0.1246	-0.6814
Ň	-1.5242	0.1716	-0.0765
н	-4.0328	2.9533	-0.9685
н	-1.8704	3.4993	0.1462
н	-4.5393	0.5547	-1.4934
C	0.0432	1./193	0.9469
н	0.1008	2./00/	1.1034
п С	2 5496	-0 2438	-0 5711
č	3.1639	1.0054	-0.7192
Ĥ	4.1294	1.2085	-1.1544
С	2.2852	1.9361	-0.1933
С	2.4062	3.4117	-0.0724
н	2.4285	3.7314	0.9734
н	3.3336	3.7367	-0.5427
н	1.5//5	3.9257	-0.5667
Ľ	2 2001	-1.3039	-0.9035
н	4 0574	-1 5015	-1 3843
н	3.1006	-2.2537	-0.0990
N	1.3616	-0.0831	0.0150
Ni	-0.1857	/ -1.2920	0.3194
C	-0.3280) -1.4442	2.6057
C	-0.4429	-2.5614	1 -1.5667
N	1.2121	1.2384	0.2383
н	-2.0451	-1.1/10	-0.9092

Compound 2 (HSEH1PBE/6-311g**; 2-propanol PCM):

Gaussian 09 Job keywords:

opt freq=vcd uhseh1pbe/6-311g(d,p)/auto
scrf=(solvent=2-Propanol) pop=npa geom=connectivity

<u>Cartesian Coordinates (.xyz):</u>

C -1.2458	1.4514 0.2169)
C = 2.1266 C = 3.3300	2.4754 -0.0969	,
C -3.6141	0.8426 -1.0110)
C -2.6801	-0.1246 -0.6814	ł
N = 1.5242	0.1/16 -0.0/65	
H - 1.8704	3.4993 0.1462	
н -4.5393	0.5547 -1.4934	ļ
C 0.0432	1.7193 0.9469)
н 0.1668	2.7887 1.1034	+)
C 2.5496	-0.2438 -0.5711	_
C 3.1639	1.0054 -0.7192	
H 4.1294	1.2085 - 1.1544 1 9361 - 0 1933	-
C 2.4062	3.4117 -0.0724	•
н 2.4285	3.7314 0.9734	ŀ
H 3.3336	3.7367 -0.5427	,
H 1.5775	-1 5859 -0 9633	2
н 2.3994	-2.0503 -1.7036	5
н 4.0574	-1.5015 -1.3843	5
H 3.1006	-2.2537 -0.0990)
Ni -0.185	7 -1.2920 0.319	, 14
c1 -0.328	0 -1.4442 2.605	7
C1 -0.4429	9 - 2.5614 - 1.566	57
H -2.8451	-1.1710 -0.9092	

Compound 3 (HSEH1PBE/6-311g**; 2-propanol PCM):

Compound 4 (HSEH1PBE/6-311g**; 2-propanol PCM):

Gaussian 09 Job keywords:

opt freq=vcd uhseh1pbe/6-311g(d,p)/auto
scrf=(solvent=2-Propanol) pop=npa geom=connectivity

<u>Cartesian Coordinates (.xyz):</u>

C C C	-1.2185 -2.0530 -3.2538	1.4998 2.5728 2.3435	0.2571 -0.0190 -0.6780
Ċ	-3.5813 -2.6940	1.0466	-1.0438 -0.7351
N	-1.5388	0.2453	-0.0971
H	-1.7642	3.5729	0.2807
H C	-4.5061 0.0729	$0.8199 \\ 1.6869$	-1.5588 1.0123
H	0.2169 0.0256	2.7396	1.2471 1.9576
Ċ	2.5773	-0.2138	-0.5832
H	4.1317	1.2700	-1.1601
C	2.2956	3.4233	0.0169
H H	2.4455 3.3268	3.7071 3.7713	1.0729 -0.4556
H C	1.5689	3.9480	-0.4458 -1.0308
H	2.5414	-1.8842	-1.9172
Н	2.9479	-2.2923	-0.2509
N Fe	-0.198	-0.0868 4 -1.3877	0.0278
CI CI	-0.390 -0.528	5 -1.6570 3 -2.7071) 2.5852 L -1.5689
N H	1.2371 -2.9010	1.2318 -1.0001	0.2792 -1.0091

Gaussian 09 Job keywords:

opt freq=vcd uhseh1pbe/6-311g(d,p)/auto
scrf=(solvent=2-Propanol) pop=npa geom=connectivity

Cartesian Coordinates (.xyz; C2 symmetry):

C 1.0628 C 1.0986 C -0.0003 C -1.0990 C -1.0631 N -0.0001 H -0.0003 H 1.9797 H -1.9802 C 2.2022 H 3.0058 H 1.8443 C -2.2024 H -1.8445	2.2164 3.6043 4.3116 3.6042 2.2163 1.5316 5.3953 4.1165 4.1165 4.1163 1.4512 2.1413 0.9831 1.4509 0.9827	$\begin{array}{c} 0.4559\\ 0.4572\\ -0.0001\\ -0.4574\\ -0.4561\\ -0.0001\\ -0.0001\\ 0.8230\\ -0.8233\\ 1.0667\\ 1.3138\\ 1.9924\\ -1.0667\\ -1.9924 \end{array}$
$\begin{array}{r} \text{H} & -3.0061 \\ \text{C} & 2.8483 \\ \text{C} & 4.1548 \\ \text{H} & 5.0486 \\ \text{C} & -2.8482 \\ \text{C} & -4.1546 \\ \text{H} & -5.0482 \\ \text{C} & 4.0731 \\ \text{C} & -4.0731 \\ \text{C} & 5.1382 \\ \text{H} & 5.2645 \\ \text{H} & 5.2645 \\ \text{H} & 6.0860 \\ \text{H} & 4.9233 \\ \text{C} & 2.3898 \\ \text{H} & 2.2040 \\ \text{H} & 3.1524 \\ \text{H} & 1.4613 \end{array}$	2.1408 -1.5555 -1.0449 -1.5316 -1.5557 -1.0450 -1.5316 0.2108 0.2108 0.2106 1.2037 1.3531 0.8458 2.1750 -2.8784 -2.8455 -3.6347 -3.1852	-1.3139 -0.6348 -0.6220 -0.9794 0.6350 0.6229 0.9806 -0.0542 0.0549 0.2423 1.3189 -0.1588 -0.2113 -1.1350 -2.2113 -0.9382 -0.6519
C -5.1381 H -6.0858 H -4.9228 H -5.2651 C -2.3896 H -2.2048 H -3.1517 H -1.4605 N 2.0165 N -2.0165 N -2.0165 N -2.7654 N 2.7654 S Br -0.1449 Br 0.1450	1.2036 0.8459 2.1751 1.3527 -2.8788 -2.87633 -3.6353 -3.1850 -0.6571 -0.6575 -0.5366 0.4099 0.4102 -0.8976	$\begin{array}{c} -0.2412\\ 0.1607\\ 0.2120\\ -1.3178\\ 1.1349\\ 2.2113\\ 0.9370\\ 0.6525\\ -0.1089\\ 0.1087\\ 4 -0.0000\\ -0.2343\\ 0.2344\\ 4 -2.5725\\ 5 2.5720\end{array}$

Compound 5 (HSEH1PBE/6-311g**; 2-propanol PCM):

Compound 6 (HSEH1PBE/6-311g**; 2-propanol PCM):

Gaussian 09 Job keywords:

opt freq=vcd uhseh1pbe/6-311g(d,p)/auto
scrf=(solvent=2-Propanol) pop=npa geom=connectivity

Cartesian Coordinates (.xyz; C2 symmetry):

	$\begin{array}{c} -0.4964\\ -0.5015\\ 0.0000\\ 0.5015\\ 0.4964\\ 0.0000\\ -0.9023\\ 0.9023\\ -1.1314\\ -1.4253\\ -2.0292\\ 1.1314\\ -1.4253\\ 0.6843\\ 0.6289\\ 0.9962\\ -0.6843\\ -0.6289\\ -0.9962\\ 0.0000\\ 0.0000\\ -0.3585\\ -1.4427\\ 0.0434\\ 0.0537\\ 1.2455\\ 2.2827\\ 1.2077\\ 0.6803\\ 0.3585\\ -0.0434\\ -0.0537\\ 1.2455\\ 2.2827\\ -1.2455\\ -2.2827\\ \end{array}$	1.0446 1.0800 0.0000 -1.0800 -1.0446 0.0000 1.9458 -1.9458 2.1646 2.9558 1.7809 -2.1646 -1.7809 -2.9558 2.8751 4.1751 5.0791 -2.8751 -4.1751 -5.0791 4.0717 5.2285 6.0787 4.9023 2.4355 2.1107 3.2572 1.5934 -5.1207 -6.0787 -4.59285 -2.4355 -2.4355 -2.4355 -2.4355 -2.4355 -2.1107	-2.0520 -3.4397 -4.1466 -3.4397 -2.0520 -1.3684 -5.2303 -3.9521 -3.9521 -1.2772 -1.9631 -0.7794 -1.2772 -0.7794 -1.2631 1.6496 1.1263 1.5861 1.6496 1.1263 1.5861 1.6496 1.1263 1.5861 -0.0989 -0.0989 -0.0989 -1.0885 -1.1898 -0.7596 -2.0774 2.9542 2.8452 3.6714 3.3573 -1.0885 -0.7596 -2.0774 -1.1898 2.9542 2.8452
	-0.0434 -0.0537 1.4427 -1.2455 -2.2827	-5.1207 -6.0787 -4.9023 -5.2285 -2.4355 -2.1107	-1.0885 -0.7596 -2.0774 -1.1898 2.9542
	-2.2827	-2.1107	2.8432
	-1.2077	-3.2572	3.6714
	-0.6803	-1.5934	3.3573
	0.1259	2.0255	0.7880
	-0.1259	-2.0255	0.7880
Cl	-2.403	9 0.1781	-0.2671
Cl	2.403	9 -0.1781	
N	0.2823	-2.7589	
N	-0.2823	2.7589	

Gaussian 09 Job keywords:

opt freq=vcd uhseh1pbe/6-311g(d,p)/auto scrf=(solvent=2-Propanol) pop=npa geom=connectivity

<u>Cartesian Coordinates (.xyz; C2 symmetry):</u>

CCCCCRHHHCHHCHHC	$ \begin{array}{c} -0 \\ -0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -1 \\ -1 \\ -2 \\ 1 \\ 2 \\ 1 \\ 0 \\ \end{array} $.52 .00 .52 .00 .95 .17 .03 .17 .03 .17 .03	228 310 000 310 228 000 545 545 789 120 390 120	1 -0 -1 -0 -0 1 -1 -2 2 1 -2 -1 -2	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	306 671 000 671 306 000 212 212 375 987 273 375 273 375 273		2343215331101011	043334462244 462244 92972627951	5393513773023202	5797588994894985
CHCCHCCCHHHCHHHCH	0 1 -0 -0 -0 -1 0 -0 -1 0 0 1 2 1 0 0 -0	.62 .01 .62 .01 .62 .01 .00 .01 .00 .01 .00 .01 .00 .01 .00 .01 .00 .01 .00 .01 .00 .01 .00 .01 .01	217 L38 273 217 L38 000 000 L62 555 L56 039 518 046 047 147 L62 L56	4 5 -3 -4 -5 4 -5 6 4 2 2 3 1 -5 -6	· 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2	937 219 405 937 219 067 804 491 655 6859 653 649 655 8653 649 804 804 804 804			9361863331367582916 936932234029862916	38338663337592433	25525669642456994
	-0 -1 -2 -1 -0 -0 -0 -0 -0 -0 -0	.099 .10 .20 .10 .59 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	39 355 518 946 947 931 514 514 9000 395 395 222 222	-4 -5 -2 -3 -3 -1 2 -2 -2 -2 -2 -2	.7 .2 .3 .5 .1 .1 0. .7 .7	655 156 859 653 478 640 361 361 000 081 081 937 937	0.6.6	2. 1. 2. 2. 3. 0. 0. 1 0. 0.	43 95 88 62 88 62 88 82 82 82 82 82 82 82 82 82 82 82 82	7359241138877	264569336686 336355

Compound 7 (HSEH1PBE/6-311g**; 2-propanol PCM):

Compound 8 (HSEH1PBE/6-311g**; 2-propanol PCM):

Gaussian 09 Job keywords:

opt freq=vcd uhseh1pbe/6-311g(d,p)/auto
scrf=(solvent=2-Propanol) pop=npa geom=connectivity

<u>Cartesian Coordinates (.xyz; C2 symmetry):</u>

C 0.0 C -0.0 C 0.0)002)009)000	1.1624 1.2127 0.0000	-1.8933 -3.2812 -3.9553
C 0.0)009 -)002 -	1.2127	-3.2812
N 0.0	0000	0.0000	-1.2432
H -0.0)000)028	0.0000	-5.0387
н 0.0	028 -	2.1408	-3.8277
C -0.0	0000	3.1/92	0.9186
н 0.0	027	5.2808	0.1553
C 0.0)139 -)000 -	4.2194	0.9186
н -0.0	027 -	5.2808	0.1553
C -0.0	091 -	3.6233	-1.2702
c 0.0	256	4.2763	-2.6030
н -0.8)416	4.0314	-3.1904
н 0.9	120	4.0036	-3.1821
н 0.9	089	3.7207	2.3992
H -0.8	463	3.9051	2.7385
C -0.0	.292)256 -	4.2763	-2.6030
н -0.0)416 -	5.3559	-2.4566
н 0.8		4.0030	-3.1904
C 0.0	$\frac{1218}{0.80}$ -	3.2737	2.3992
н 0.8		3.9051	2.7385
H 0.1	$\frac{292}{128}$ -	2.2845	2.8428
N 0.0)138 -	2.0120	0.3053
Ni 0.	0000	0.0000	0.7451
N 0.0	001	2.2679	-1.0342
Br 2. Br -?	3827 3827	0.0188	3 1.4904 3 1.4904
Br -2.	3827	-0.0188	3 1.4904

Gaussian 09 Job keywords:

opt freq=vcd uhseh1pbe/6-311g(d,p)/auto
scrf=(solvent=2-Propanol) pop=npa geom=connectivity

Compound 9 (HSEH1PBE/6-311g**; 2-propanol PCM):

Gaussian 09 Job keywords:

opt freq=vcd uhseh1pbe/6-311g(d,p)/auto
scrf=(solvent=2-Propanol) pop=npa geom=connectivity

Cartesian Coordinates (.xyz; C1 symmetry):

Note: the C2 symmetry structure is a saddle point whereas the C1 symmetry structure (coordinates below) is a true minimum.

Compound 9a (HSEH1PBE/6-311g**; 2-propanol PCM):

Gaussian 09 Job keywords:

opt freq=vcd uhseh1pbe/6-311g(d,p)/auto
scrf=(solvent=2-Propanol) pop=npa geom=connectivity

<u>Cartesian</u>	Coordinates	(.xyz;	C1 sy	ymmetry	<i>י</i>):

00000211100100100111011101110	$\begin{array}{c} 1.\\ 0.\\ -0.\\ 0.\\ 2.\\ -1.\\ 3.\\ 4.\\ 5.\\ -3.\\ -4.\\ -5.\\ 3.\\ -3.\\ 4.\\ 3.\\ 3.\\ 2.\\ -3.\\ -3.\\ -3.\\ -3.\\ -3.\\ -3.\\ -3.\\ -3$	4365 54014 564014 56115 86245 62262 62236 62236 62236 62236 62236 83779 4950 561059 561059 561059 50296 84268 50296 84268 50296 502968 502968 502968 502968 502968 502968 502968 502968 502968 502968 50296 50000 5000 5000000	1. 3. 4. -0. -0. -0. -0. -0. -0. -0. -0	8864 2515 1419 3605 1419 3605 1419 3605 1244 68797 0264 75310 22971 0264 7493 0185 2370 7493 0185 2136 9136 9136 9136 9136 9136 9136 9136 9	$\begin{array}{c} 0.\\ 0.\\ 0.\\ 0.\\ 0.\\ 0.\\ 0.\\ 0.\\ 0.\\ -0.\\ -$	1144 2748 3487 2451 0799 0307 4635 3140 2665 4228 0196 0757 5795 2522 2439 2452 0613 7337 6334 9797 0252 8079 6254 0374 1233 4891 2451 2719 9940
HHHCHHHNN	-4. -3. -3. -3. -4. -2. 2. -1.	9268 3860 6620 5478 9697 2868 6418 1127 9939	3. 3. -1. -2. -1. -2. -0. 0.	1374 5084 9502 6791 2450 6818 1762 3118 1414	0. 1. -0. -0. -1. -1. -0. -0.	6464 4251 2719 9940 1584 7988 3412 4092 4685
CT N F O C H C	-0 -2. 2. -0 -0. -0. -0. -0. -0.	.1403 0694 4644 .0176 0456 7765 2162 1355	$\begin{array}{c} 3 & -1 \\ 1 & 0 \\ 0 & -0 \\ -1 & -3 \\ -3 & -3 \\ -4 & -4 \end{array}$.930 4472 9407 .758 8526 0126 4048 1012	2 -2 -0. -0. 6 -0 1. 1. 0. 2.	2.4871 0812 0041 0.2899 2174 4544 5166 0132
H H H C H H H H H	-U. 0. -1. -1. -2. -2.	4101 9432 5864 9304 5345 5731 5436	-5. -4. -3. -2. -2. -1. -3.	0305 3177 7587 7282 3778 9415 6176	2. 1. 2. 3. 2. 2.	2103 3083 9513 4136 3735 0080 5962

Compound 9b (HSEH1PBE/6-311g**; 2-propanol PCM):

Compound 9c (HSEH1PBE/6-311g**; 2-propanol PCM):

Gaussian 09 Job keywords:

opt freq=vcd uhseh1pbe/6-311g(d,p)/auto
scrf=(solvent=2-Propanol) pop=npa geom=connectivity

Cartesian Coordinates (.xyz; C1 symmetry):

Fe	e O	.0057	7 -1.0013	3 -0.7469
N	-0.	1384	1.0425	0.0955
Ν	2.	0391	-0.2463	-0.3842
N N	-2.	4025	-0.5725	-0.3027
c	3.	2557	-0.6455	-0.7092
С	-0.	3081	3.4762	1.3172
н С	-0.	2548	-1.1743	-0.5397
Č	Ō.	9705	1.7178	0.3784
C	-1.	3294	1.5397	0.4126
Н	2.	5639	-2.5629	-1.2936
Н	4.	1727	-2.5656	-0.5282
H C	3. _3	9903 7625	-1.9921	-2.1858
c	4.	1757	0.4087	-0.5260
Н	5.	2377	0.3933	-0.7151
C	-4.	3235	-0.2807	-0.0717 -0.3120
Ĥ	-5.	3779	-0.4750	-0.4310
C	-1.	4701	2.7761	1.0338
С	3.	9524	2.8466	0.2406
Н	3.	4004	3.6200	-0.2994
H	4.	9977	2.9064	-0.0619
C	Ő.	9394	2.9597	1.0030
Н	1.	8338	3.5012	1.2616
H	-4.	3926	2.4169	1.4817
Н	-5.	5174	2.0571	0.1746
H C	-4.	3032	3.0208	-0.1568
Ĥ	-3.	7796	-2.6732	-1.9627
Н	-3.	8863	-3.1948	-0.2810
Н	-2.	1017	-2.6542	-1.1984
C	0.	5066	-2.3317	2.2477
0 C	0.	3994	-1.4629	1.5424
Ĥ	1.	2772	-4.3420	2.2138
Н	1.	2105	-3.5043	0.6179
N	2.	1499	1.0518	0.0084
С	0.	2344	-2.3615	3.7206
H H	-0.	1659	-3.2335 -2.4872	5.9473 4.2794
Н	-0.	2805	-1.4547	4.0349

Gaussian 09 Job keywords:

opt freq=vcd uhseh1pbe/6-311g(d,p)/auto
scrf=(solvent=2-Propanol) pop=npa geom=connectivity
empiricaldispersion(pfd)

<u>Cartesian Coordinates (.xyz; C1 symmetry):</u>

ССССССССОННННННН:	-2.1998	-0.2093	2.2216
	-2.4102	1.1964	2.6990
	-0.7984	-0.7083	2.1271
	0.3076	0.1103	2.3746
	-0.5979	-2.0585	1.8242
	1.5920	-0.4269	2.3514
	0.6818	-2.5874	1.7858
	1.7800	-1.7707	2.0595
	-3.1326	-0.9377	1.9376
	-1.8166	1.8941	2.0967
	-3.4678	1.4483	2.6402
	-2.0682	1.2969	3.7341
	0.1743	1.1502	2.6440
	-1.4668	-2.6787	1.6331
	2.4460	0.2102	2.5534
	0.8304	-3.6357	1.5492
	2.7827	-2.1860	2.0478
H Fe Cl	-0.1431 0.069 0.173	2.7285 2 1.4973 1 2.7105 -0 5665	$\begin{array}{r} 1.1051 \\ 3 -0.0254 \\ 5 -2.2127 \\ -0.8240 \end{array}$
N	-1.9131	0.7503	-0.5776
N	2.1953	1.0045	-0.2307
N	2.5178	-0.2519	-0.6022
C	-3.1332	1.2431	-0.5458
C	0.5084	-3.0523	-1.9100
H	0.6041	-4.0366	-2.3538
C	3.2950	1.5787	0.2044
C C C U	-0.8251 1.4716 -3.3606	-1.2462 -1.0847 2.6745	-1.1565 -1.0151 -0.2291
H	-4.1056	2.7879	0.5620
H	-3.7318	3.2036	-1.1112
C	3.8530	-0.4983	-0.3821
C	-4.0629	0.2315	-0.8568
H	-5.1383	0.3127	-0.8804
C	-3.3358	-0.9072	-1.0885
C	4.3687	0.6666	0.1288
H C H C	5.3949 1.6523 2.6289	0.8327	0.4175 -1.5806 -1.7782
H H H	-3.6187 -4.9334 -3.4489	-2.2000 -2.5916 -2.2575 -3.0076	-1.3833 -2.4027 -1.2773 -0.6839
C	-0.7562	-2.5222	-1.7024
H	-1.6345	-3.0795	-1.9824
C	4.5650	-1.7787	-0.6297
H	4.0868	-2.6199	-0.1204
H	5.5815	-1.6873	-0.2477
H	4.6300	-2.0142	-1.6958
C	3.2631	2.9800	0.6907
H	3.7022	3.65/6	-0.04/4
H	3.8337	3.0829	1.6164
H	2.2298	3.2844	0.8707
N	-2.0174	-0.5525	-0.9262

Compound 9c AXIAL (HSEH1PBE/6-311g**; 2-propanol PCM):

Gaussian 09 Job keywords:

opt freq=vcd uhseh1pbe/6-311g(d,p)/auto
scrf=(solvent=2-Propanol) pop=npa geom=connectivity

<u>Cartesian Coordinates (.xyz; C1 symmetry):</u>

Fe	0.8235	5 -0.0812	2 -1.3924
CI	3.353	L 0.0105	9 - 1.7950
N	0.8549	-2.0901	-0.5134
Ν	0.7212	2.0302	-0.8160
N	1.1536	2.3525	0.4326
c	1.8349	0.3086	3.4320
Ĥ	2.0508	0.3946	4.4903
C	0.5532	3.1682	-1.4635
c	1 3754	-1.0059	1.5030
c	0.3362	-3.5809	-2.3815
Н	0.2152	-2.6346	-2.9111
Н	-0.6125	-4.1251	-2.3954
С	1.2717	3.7159	0.5757
С	1.1489	-4.2469	0.0101
Н	1.1913	-5.3215	-0.0754
c	0.8914	4.2536	-0.6273
Н	0.8685	5.3039	-0.8726
C	1.6599	1.4596	2.6796
п С	1.9429	-4.0227	2.4370
Ĥ	2.8992	-3.5805	2.7276
н	2.0828	-5.1003	2.3555
С	1.7225	-0.9502	2.8630
Н	1.8412	-1.8332	3.4677
C	1.7409	4.4412	1.7843
Н	1.8303	5.4983	1.5347
н	2.7204	4.0911	2.1199
C	0.0725	3.1834	-2.8688
Н	-0.8648	3.7405	-2.9495
н	-0.0839	2.1599	-3.2132
Н	0.3823	-0.2526	-3.0425
o	-1.3531	-0.0469	-0.5848
Ċ	-2.6826	-0.9999	-2.3029
Н	-3.4351	-0.4552	-2.8/89
Н	-3.0443	-2.0259	-2.1819
С	-3.6396	-0.1310	-0.0713
C	-4.9333	-0.5226	-0.4282
c	-5.9980	-0.2865	0.4318
н	-5.1154	-1.0152	-1.3763
C	-4.4940	0.7388	2.0150
C	-5.7801	0.3447	1.6518
H	-6.9986	-0.5942	0.1495
Н	-4.3252	1.2318	2.9661 2.3212
N	1.2765	-2.1969	0.7762

Compound 9d (HSEH1PBE/6-311g**; 2-propanol PCM):

Gaussian 09 Job keywords:

opt freq=vcd uhseh1pbe/6-311g(d,p)/auto
scrf=(solvent=2-Propanol) pop=npa geom=connectivity

<u>Cartesian Coordinates (.xyz; C1 symmetry):</u>

Fe -0.3761 -0.5353	0.6430
CI -0.2397 -1.5394	2.9204
N -2.4225 -1.1562	0.2254
N 0.8566 1.2015	1.0915
N 0.4418 2.3612	0.5023
C = 2.8505 3.4220 = -2.8505	-0.7893
н -3.4123 4.3062 -	-1.0661
C 2.1026 1.4093	1.4828
C = -0.8683 2.3979	0.0068
C -2.4723 -3.5603	0.6725
H = 2.1202 = 4.2167 =	-0.1287
н -1.6334 -3.3226	1.3268
C 1.4384 3.3072	0.5150
С -4.2339 -2.1486 -	-0.6402 -0.9115
C -4.3086 -0.8189 -	-0.9681
C 2.5070 2.7166	1.1391
C -1.5403 3.5591 -	-0.3563
н -1.0899 4.5348 -	-0.2812
С -5.3516 -0.1316 -	-1.//14 .1 1621
н -6.0102 -0.8874 -	-2.1986
Н -4.9218 0.4464 -	-2.5932
C = 3.4690 2.1819 - H = 4.5015 2.0974 -	-0.8403
C 1.3582 4.6723 -	-0.0653
Н 0.9993 4.6594 -	-1.0972
н 0.7092 5.3305	0.5195
C 2.8950 0.3512	2.1573
H 3.4636 0.7721 H 3.6059 -0.0915	2.9895
н 2.2377 -0.4358	2.5292
C 1.7168 -2.3004 -	-0.4399
C 1.6166 -3.6545 -	-1.1494
н 2.5306 -4.2466 -	-1.0427
Н 0./810 -4.2243 - Н 1 4286 -3 4950 -	-0./332 -2 2159
C 2.9251 -1.5298 -	-0.9580
C 2.7540 -0.3772 -	-1.7197
C $4.2261 - 1.9595 - C$ C $3.8525 0.3292 - C$	-0.6824
н 1.7400 -0.0430 -	-1.9086
С 5.3264 -1.2568 -	-1.1593
C 5.1432 -0.1075 -	-1.9250
Н 3.7000 1.2271 -	-2.7936
н 6.3296 -1.6027 - Н 6.0007 0.4438 -	-0.9304 -2.2967
N -3.1890 -0.2355 -	-0.4235
н 1.9203 -2.5082	0.6285

Table S5. Thermochemical analysis (P = 1.0 atm; T = 298.15 K) for compounds involved in the catalytic cycle of **9** (Figure S12) calculated at the HSEH1PBE/6-311G(d,p) level of theory in a 2-propanol solvent continuum.^{*a*}

Parameter	АСР	Acetone	iPrOH	iPrOK	КСІ	Cpd 9	Cpd 9a	Cpd 9b	π-adduct 9c	Axial 9c	Cpd 9d	1-PhEtOH
Zero-point correction	0.1382	0.0837	0.1081	0.0949	0.0004	0.3076	0.4038	0.3969	0.4537	0.4577	0.4574	0.1616
Thermal correction to Energy	0.1461	0.0890	0.1135	0.1020	0.0034	0.3297	0.4319	0.4263	0.4845	0.4892	0.4884	0.1700
Thermal correction to Enthalpy	0.1470	0.0899	0.1144	0.1029	0.0043	0.3307	0.4329	0.4273	0.4855	0.4901	0.4894	0.1709
Thermal correction to Gibbs Free Energy	0.1055	0.0566	0.0807	0.0629	-0.0234	0.2554	0.3421	0.3327	0.3915	0.3892	0.3914	0.1281
Sum of electronic and zero-point Energies	-384.4354	-192.9171	-194.0933	-793.3257	-1059.9147	-3038.3719	-2771.7492	-2771.7056	-2963.2008	-1823.1226	-2963.2692	-385.6089
Sum of electronic and thermal Energies	-384.4276	-192.9118	-194.0879	-793.3187	-1059.9117	-3038.3497	-2771.7210	-2771.6762	-2963.1700	-1823.0911	-2963.2381	-385.6005
Sum of electronic and thermal Enthalpies	-384.4267	-192.9109	-194.0869	-793.3177	-1059.9108	-3038.3488	-2771.7201	-2771.6752	-2963.1690	-1823.0901	-2963.2372	-385.5995
Sum of electronic and thermal Free Energies	-384.4682	-192.9442	-194.1207	-793.3577	-1059.9385	-3038.4241	-2771.8108	-2771.7699	-2963.2631	-1823.1910	-2963.3351	-385.6423

^a Abbreviations: ACP, acetophenone; iPrOH, 2-propanol; iPrOK, potassium isopropoxide; 1-PhEtOH, 1-phenylethanol.

Table 50. State chergy levels from the memochemical data fisted in Table 55 for the catalytic cycle of 7 depicted in Figure 51	Table So	6. State energy	levels from t	the thermochemical	data listed in	Table S5 for th	he catalytic cy	ycle of 9 de	picted in Fig	gure S12
---	----------	-----------------	---------------	--------------------	----------------	-----------------	-----------------	--------------	---------------	----------

State	Gibbs energy (Hartree)	Gibbs rel. energy (Hartree)	Gibbs rel. energy (kJ mol ⁻¹)	ΔG (reaction s (kJ mol ⁻¹)	step)
9 + iPrOK + Acetophenone + iPrOH	-4410.370679	0	0	/	/
9a + KCl + Acetophenone + iPrOH	-4410.338178	0.032501	85.33	$9 \rightarrow 9a$, activation	85.33
9b + KCl + Acetophenone + iPrOH	-4410.297208	0.073471	192.90	$9a \rightarrow 9b$, step 1	107.57
9c + KCl + Acetone + iPrOH	-4410.266464	0.104215	273.62	$9b \rightarrow 9c$, step 2	80.72
9d + KCl + Acetone + iPrOH	-4410.338542	0.032137	84.38	$9c \rightarrow 9d$, step 3	-189.24
9a + KCl + Acetone + 1-PhEtOH	-4410.335886	0.034793	91.35	$9d \rightarrow 9a + prod$, step 4	6.97

References

- (1) Watson, A. A.; House, D. A.; Steel, P. J. Inorg. Chim. Acta 1987, 130, 167-176.
- (2) Groom, C. R.; Allen, F. H. Angew. Chem. Int. Ed. 2014, 53, 662-671.
- (3) (a) Manikandan, P.; Padmakumar, K.; Thomas, K. J.; Varghese, B.; Onodera, H.; Manoharan, P. Inorg. Chem.

2001, 40, 6930-6939; (b) Mahapatra, S.; Butcher, R. J.; Mukherjee, R. J. Chem. Soc., Dalton Trans. **1993**, 3723-3726.

- (4) Shannon, R.; Prewitt, C. *Acta Crystallogr. B* **1970**, *26*, 1046-1048.
- (5) Heyd, J.; Scuseria, G. E. J. Chem. Phys. **2004**, *121*, 1187-1192.
- (6) McLean, A.; Chandler, G. J. Chem. Phys. **1980**, 72, 5639-5648.
- (7) Miertuš, S.; Scrocco, E.; Tomasi, J. *Chem. Phys.* **1981**, *55*, 117-129.
- (8) Ojwach, S. O.; Guzei, I. A.; Benade, L. L.; Mapolie, S. F.; Darkwa, J. Organometallics 2009, 28, 2127-2133.
- (9) Calderazzo, F.; Englert, U.; Hu, C.; Marchetti, F.; Pampaloni, G.; Passarelli, V.; Romano, A.; Santi, R. *Inorg. Chim. Acta* **2003**, *344*, 197-206.
- (10) Austin, A.; Petersson, G. A.; Frisch, M. J.; Dobek, F. J.; Scalmani, G.; Throssell, K. J. Chem. Theory Comput. **2012**, *8*, 4989-5007.
- (11) Foster, J.; Weinhold, F. J. Am. Chem. Soc. 1980, 102, 7211-7218.