Electronic Supplementary Information

Reactivity of hydroxylamine ionic liquid salts in direct synthesis of caprolactam from cyclohexanone under mild conditions

Zhihui Li,^{a,b} Qiusheng Yang,^a Liya Gao,^a Yuanyuan Xu,^a Dongsheng Zhang,^{a*} Shufang Wang,^a Xinqiang Zhao^a and Yanji Wang^{a*}

a Hebei Provincial Key Lab of Green Chemical Technology and High Efficient Energy Saving Hebei University of Technology Guang Rong Dao 8, Hongqiao Distric, Tianjin 300130 (China) E-Mail: zds1301@hebut.edu.cn; yjwang@hebut.edu.cn

b School of Energy and Environmental Engineering Hebei University of Technology Tianjin 300401 (China)

Schemes

Scheme S1 Traditional process for synthesis of CPL

Figures

Figure S1 (a-d) 1 H and 13 C NMR spectra of the two novel (NH₂OH)₂·ILs

(NH₂OH)₂·[HSO₃-b-N(CH₃)₃]·HSO₄: δH (400 MHz; DMSO-d₆) 1.593(m, 2H), 1.766(t, 2H),

2.489(m, 2H), 3.025(s, 9H), 3.285(m, 2H), 8~9(bs, 20H).

(NH₂OH)₂·[HSO₃-b-N(CH₃)₃]·HSO₄: δC (400 MHz, D₂O) 20.945, 21.135, 49.889, 52.764,

65.769.

(NH₂OH)₂·[HSO₃-b-Py]·HSO₄: δH (400 MHz; DMSO-d₆) 1.562(t, 2H), 2.011(t, 2H), 2.505(t,

2H), 4.631(t, 2H), 8.173(t, 2H), 8~9(bs, 7H), 8.610(t, 1H), 9.109(d, 2H).

(NH₂OH)₂·[HSO₃-b-Py]·HSO₄: δC (400 MHz, D₂O) 20.783, 29.236, 49.871, 61.101, 128.233, 144.173, 145.613.

Figure S1 (a) ¹H NMR spectra of (NH₂OH)₂·[HSO₃-b-N(CH₃)₃]·HSO₄ (DMSO-d₆)

Figure S1 (b) ${}^{13}C$ NMR spectra of $(NH_2OH)_2 \cdot [HSO_3-b-N(CH_3)_3] \cdot HSO_4(D_2O)$

Figure S1 (c) ¹H NMR spectra of (NH₂OH)₂·[HSO₃-b-Py]·HSO₄ (DMSO-d₆)

Figure S1 (d) ${}^{13}C$ NMR spectra of $(NH_2OH)_2 \cdot [HSO_3-b-Py] \cdot HSO_4 (D_2O)$

Tables

Table S1 Species and corresponding frequency values of the two $(NH_2OH)_2 \cdot ILs$ (Raman spectra)

Species	Freequency (cm ⁻¹)	
N-OH stretch	1011	
OH bend, NH ₃ rock	1190	
NH ₃ deformation	1617	
NH ₃ stretch	2973	

 Table S2 Beckmann rearrangement of COX to CPL under different conditions

No	$[HSO_3-b-(CH_3)_3] \cdot H_2SO_4 \text{ (mmol)}$	ZnCl ₂ (mmol)	X _{COX} (%)	S _{CPL} (%)	S _{CYC} (%)	
1	0	0	3.4	0	100	
2	0.25	0	20.6	19.2	80.8	
3	0	0.75	64.6	91.2	8.8	
4	0.25	0.75	98.4	96.9	3.7	
Reaction conditions: COX 5 mmol, [HSO ₃ -b-(CH ₃) ₃]·H ₂ SO ₄ 2.5 mmol, acetonitrile 10 mL, 80 °C, 4 h.						