Supporting Information

Reduction of selective polyaromatic nitrotriptycene *via* azoxytriptycene intermediate under ambient conditions using cobalt/cobalt oxide nanocomposite (CoNC)

Akbar Mohammad,^a Veenu Mishra,^a Prakash Chandra ^a and Shaikh M. Mobin*^{a,b}

^aDiscipline of Chemistry, Indian Institute of Technology Indore, Simrol, Indore 452020, M.P., India

^bCentre for Material Science and Engineering, Indian Institute of Technology Indore, Simrol, Indore 452020, M.P., India

*Corresponding author, email: xray@iiti.ac.in

Table of Contents

Page No.

1.	XRD and SEM-EDAX of CoNC	3			
2.	Time dependent ¹ H NMR spectra for the catalytic reduction of M1				
	and M2	4-5			
3.	XPS of CoNC	6			
4.	SEM-EDAX of spent CoNC	7			
5.	Mechanistic confirmation of intermediates and product				
	(1)	8-9			
6.	H-bonded 2D-network of 2	10			
7.	Table S1 (Reduction of polyaromatic nitro compounds in different				
	solvents)	11-12			
	Table S2 (Crystallographic table)	13-14			
	Table S3 (Hydrogen bonding table)	15			
8.	¹ H NMR data and spectra for the compounds	16-27			

1. XRD and SEM-EDX of CoNC

Fig.S1Powder XRD pattern of CoNC.

SEM EDAX of the fresh catalyst

Fig.S2SEM images of as synthesized **CoNC**; (A) 200 nm; (B) 300 nm; (C) incent picture showing capsule like structure of **CoNC**; (D) EDAX table; (E) EDAX analysis

2. Time dependent ¹H NMR spectra for the catalytic reduction of M1 and M2

Fig. S3Time dependent ¹H NMR spectra for the catalytic reduction of mononitrotriptycene (**M1**) at (**a**) 10 min, (**b**) 20 min, (**c**) 30 min, (**d**) 40 min, (**e**) 50 min, (**f**) 60 min

Fig. S4Time dependent ¹H NMR spectra for the catalytic reduction of trinitrotriptycene (**M2**) at (a) 5 min, (b) 10 min, (c) 15 min, (d) 20 min, (e) 25 min, (f) 30 min

3. XPS of CoNC

Fig.S5XPS spectra; (E) C correction for fresh **CoNC**; (F) O present in **CoNC**; (G) spent **CoNC**; (H) Co present in **CoNC**

4. SEM-EDAX of spent CoNC

After each cycle, catalyst was separated by the external magnet, dried and reused (Video attached).

Fig.S6SEM images of recycled CoNC; (A) 300 nm; (B) 200 nm; (C) EDAX table; (D) EDAX analysis

5. Mechanistic confirmation of intermediates and product (1)

Fig.S7 Plausible mechanism for the catalytic reduction of M1.

270[M+1]

308[M+23]

573[M]

Fig. S8Mechanistic confirmation of intermediates and product (1)

6. H-bonded 2D-network of 2

Fig. S9Packing of 2 showing H-bonded 2D-network

The packing of 2 reveals presence of intermolecular H-bonding (N-H…N) between N-atom of one of the amine group and H-atom of another amine from neighboring unit leading to the formation of 1D polymeric chain. Furthermore, the 1D-polymeric chains extend via same N-H…N and C–H… π interactions along the *a*-axis leading to the formation of a 2D-network.

7. Table S1.Reduction of polyaromatic nitro compounds in different solvents

Entry No.	Substrate	Product	Conversion / Selectivity(%) / time				
			DCM	Ethyl acetate	Ether	Water	Methanol
	NO ₂	NH ₂	95/99/60min	73/68 /70min	61/52/70min	30/37/240min	Sparingly soluble
	M1	1					
	O ₂ N O ₂ N	H ₂ N H ₂ N	95/99/30min	82/99/70min	90/99/70min	66/99/180min	Sparingly soluble
	M2	2					
3	NO ₂	NH ₂	86/87/60min	70/71/70min	8/99/70min	6/99/300min	99/99/70min
4		NH ₂	61/90/60min	43/54/70min	63/93/70min	95/98/120min	95/99/70min
5	NO ₂ NH ₂	NH ₂	99/99/60min	44/95/70min 11	95/99/70min	16/99/240min	99/99/70min

6	CH ₃	CH	Low yield (1 ₃ <3%)	Low yield (<2%)	10/99/70min	8.5/99/300min	98/99/70min
7		NH ₂	98/99/60min	90/90/70min	90/90/70min	12/99/300min	95/99/70min
8		NH ₂	13/99/60min	60/99/70min	99/99/70min	56/99/180min	99/99/70min
9		NH2	70/83/60min	27/25/70min	35/30/70min	49/51/180min	Low yield (<2%)
10			75/99/60min	In this case reaction solvents (DCM and	ns were performed on l MeOH).	ly for optimized	11/99/70min

Table S2. Crystallographic details for 2 and III

Identification code	2	III
Empirical formula	$C_{21} H_{19} Cl_2 N_3$	C ₄₀ H ₂₆ N ₂ O
Formula weight	384.29	550.63
Temperature	293(2) K	293(2) K
Wavelength (Å)	1.54184	1.5418
Crystal system	monoclinic	triclinic
Space group	$P2_1/n$	Pī
a, Å	12.084(6)	10.6315(7)
b, Å	9.0350(12)	11.8390(9)
c, Å	17.401(6)	12.1481(8)
α, deg	90	87.279(6)
β, deg	100.28(3)	68.228(6)
γ, deg	90	86.725(6)
Volume, A ³	1869.3(11)	1417.08(18)
Ζ	4	2
D _{calcd} , mg/m ³	1.366	1.290
μ, mm ⁻¹	3.188	0.602
F(000)	800	576
Crystal size, mm ³	0.330 x 0.260 x	0.210 x 0.170 x 0.130
	0.210	
θ range, deg	4.893 to 39.994	3.741 to 71.277
Index ranges	-10<=h<=9,	-12<=h<=12,
	-7<=k<=6,	-14<=k<=14,
	-14<=1<=14	-14<=1<=11

Reflections	3830 / 1132 [R(int)	9377 / 5357 [R(int) =
collected/unique	= 0.0352]	0.0223]
Ĩ		
Max. and min.	1.00000 and	1.00000 and 0.90865
transmission	0.50552	
Data/restraints/parameters	1132 / 0 / 235	5357 / 101 / 464
GOF F ²	1 076	1 027
001,1	1.070	1.027
$R_1, wR_2 [I > 2\sigma(I)]$	R1 = 0.0812,	R1 = 0.0527, wR2 =
	wR2 = 0.2345	0.1382
R ₁ , wR2 (all data)	R1 = 0.0850, wR2	R1 = 0.0699, wR2 =
	= 0.2400	0.1545
Largest diff. peak and	1.065 and -0.617	0.185 and -0.239
hole, e. Å ⁻³		
CCDC No.	1422762	1422763

Table S3.Hydrogen bonding parameters for2[Å and (°)]

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)			
N2-H2BN1 (3)	0.860(1)	2.361(1)	3.130(1)	149.05(1)			
Equivalent positions:							
(3) -x+1/2,+y-1/2,-z+1/2+2							

8. ¹H NMR data and spectra for the compounds

Monoaminotriptycene (1)¹H-NMR (400MHz, CDCl₃) δ (ppm) = 7.32-7.35 (m, 4H, Ph) 7.12(d 1H, J= 8 Hz Ph), 6.95-6.98 (m 4H, Ph) 6.78(d, J= 2 Hz 1H), 6.26(d of d J = 2 Hz, 8 Hz 1H, Ph). 5.29 (s 1H, bridgehead), 3.51(brs, 2H, NH₂).

Triaminotriptycene (2)¹H-NMR (400MHz, CDCl₃) δ (ppm) = 7.04 (d, 3H, 8Hz Ph) 6.72 (s 3H, Ph), 6.23(m 3H, Ph) 5.04(s, 1H, bridgehead), 5.02(s 1H, bridgehead), 3.48(brs, 6H, NH2).

1-aminopyrene (3) ¹H-NMR (400MHz, CDCl₃) δ(ppm) 7.90-8.06 (m, 7H), 7.80(d, 1H, J=8.8 Hz), 7.37 (d, 1H J= 8 Hz), 4.49 (brs, 2H, NH₂).

1-aminonaphthelene (4) ¹H-NMR (400MHz, CDCl₃) δ(ppm) 7.78-7.82 (m, 2H) 7.43-7.45 (m, 2H), 7.24-7.30 (m, 2H), 6.76 (d, 1H, J= 6.4Hz), 4.13 (brs, 2H NH₂).

1,4-diaminonaphthelene (5) ¹H-NMR (400MHz, CDCl₃) δ(ppm) 7.84-7.87 (m, 2H), 7.46-7.52 (m, 2H), 6.68 (s, 2H), 3.79 (brs, 4H, NH₂)

2-methyl-1-aminonaphthelene (6) ¹H-NMR (400MHz, CDCl₃) δ(ppm) 7.76-7.81 (m, 2H), 7.38-7.46 (m, 2H), 7.21-7.28 (m, 2H), 4.10 (brs 2H, NH₂), 2.36 (s, 3H, CH₃).

1-aminoflourenthene (7) ¹H-NMR (400MHz, CDCl₃) δ(ppm), 7.93-7.95 (d, 1H, J= 6.8 Hz), 7.86-7.88 (d, 1H, J= 11.2 Hz), 7.75-7.80 (m, 2H), 7.69-7.71(d,1H, J= 7.52 Hz) 7.55-7.59 (m, 1H), 7.31-7.34 (m, 1H), 7.24-7.27 (m, 1H), 6.73(d, 1H, J= 7.28 Hz), 4.42(brs, 2H, NH₂).

6-methyl-5-aminoquinoline (8)¹H-NMR (400MHz, CDCl₃) δ(ppm), 8.83(m, 1H) 8.14(d, 1H, J= 8.2 Hz,), 7.50-7.53(d, 1H, 8.2 Hz), 7.43-7.45 (d, 1H, J.=. 8.2 Hz), 7.31-7.33(m, 1H), 4.14(brs, 2H, NH₂), 2.35(s, 3H, CH₃)

9-aminoanthracene (9) ¹H-NMR (400MHz, CDCl₃) δ(ppm) ,7.92 (m, 4H), 7.88 (s, 1H), 7.42 (m, 4H), 4.86 (brs, 2H, NH₂)

1-methoxycarbonyl-2-phenyl-3-nitro-9H-carbazole (10)¹H-NMR (400MHz, CDCl₃) δ(ppm), 9.51(s, 1H), 8.00 (d, 1H, J = 6.8 Hz), 7.67 (s, 1H), 7.40-7.46 (m, 2H), 7.19-7.22 (m, 1H), 6.53(s, 1H), 3.65 (brs, 2H, NH₂), 3.52 (s, 3H, CH₃)

Fig.S10¹H NMR spectrum (400 MHz, CDCl₃) of 1.

Fig. S11^{1}H NMR spectrum (400 MHz, CDCl₃) of **2**.

Fig. S12¹H NMR spectrum (400 MHz, CDCl₃) of 3.

Fig. $S13^{1}H$ NMR spectrum (400 MHz, CDCl₃) of 4.

Fig. $S14^{1}H$ NMR spectrum (400 MHz, CDCl₃) of **5**.

Fig. S15¹H NMR spectrum (400 MHz, CDCl₃) of 6.

Fig. S16¹H NMR spectrum (400 MHz, CDCl₃) of 7.

Fig.S17¹H NMR spectrum (400 MHz, CDCl₃) of 8.