Supplementary Information

Photo-responsive modulation of hybrid peptide assembly, charge transfer complex formation and gelation \dagger

Apurba Pramanik, Arpita Paikar, Krishnendu Maji and Debasish Haldar*
Department of Chemical Sciences, Indian Institute of Science Education and Research -Kolkata,
Mohanpur, West Bengal- 741246, India.
E-mail: deba_h76@yahoo.com, deba_h76@iiserkol.ac.in

Table of contents

ESI Figure S1	2	Figure S9	15
ESI Figure S2a	2	Figure S10	16
ESI Figure S2b	3	Figure S11	16
ESI Figure S2c	3	Figure S12	17
ESI Figure S3	4	Figure S13	17
ESI Figure S4	4	Figure S14	18
Experimental	5-11	Figure S15	18
Figure S1	11	Figure S16	19
Figure S2	12	Figure S17	19
Figure S3	12	Figure S18	20
Figure S4	13	Figure S19	20
Figure S5	13	Figure S20	21
Figure S6	14	Figure S21	21
Figure S7	14	Figure S22	22
Figure S8	15	Figure S23	22

ESI Figure S1: (a) UV spectra of peptide 1 with picric acid in 1,2-dichlorobenzene (I) before UV light (II) after UV light. (b) Fluorescence spectra of peptide 1 with picric acid in 1,2dichlorobenzene (I) before UV light (II) after UV light (ex. 420 nm).

ESI figure S 2a: A plot of Benesi Hildebrand equation from UV/Vis spectroscopy of peptide 1. Absorbance is measured with increasing concentration of picric acid at a constant concentration of peptide $1\left(10^{-5} \mathrm{M}\right)$. The plot shows that maximum at a 1:1 molar ratio of peptide 1 and picric acid and binding const. is $8.08 \times 10^{10} \mathrm{M}^{-1}$.

ESI figure S 2b: A plot of Benesi Hildebrand equation from UV/Vis spectroscopy of peptide 2. Absorbance is measured with increasing concentration of picric acid at a constant concentration of peptide $1\left(10^{-5} \mathrm{M}\right)$. The plot shows that maximum at a $1: 1$ molar ratio of peptide 1 and picric acid and binding const. is $8.78 \times 10^{10} \mathrm{M}^{-1}$.

ESI figure S 2c: A plot of Benesi Hildebrand equation from UV/Vis spectroscopy of peptide 3. Absorbance is measured with increasing concentration of picric acid at a constant concentration of peptide $1\left(10^{-5} \mathrm{M}\right)$. The plot shows that maximum at a 1:1 molar ratio of peptide 1 and picric acid and binding const. is $5.82 \times 10^{10} \mathrm{M}^{-1}$.

ESI figure S3: UV/visible absorption of peptide 2 in methanol $\left(10^{-5} \mathrm{M}\right)$.

ESI figure S4: The change of Tgel with increasing concentration of organogel obtained from (a) peptide $2(\mathrm{MGC} 11 \mathrm{mg} / \mathrm{mL})$ and (b) peptide $3(\mathrm{MGC} 12 \mathrm{mg} / \mathrm{mL})$ in 1,2-dichlorobenzene.

Experimental:

Synthesis of peptide 1:

(a) Boc-Phe(1)-OH : A solution of L-phenylalanine (3.30 g, 20 mmol) in a mixture of dioxane $(40 \mathrm{~mL})$, water $(20 \mathrm{~mL})$ and $1(\mathrm{M}) \mathrm{NaOH}(20 \mathrm{~mL})$ was stirred and cooled in an icewater bath. Di-tert-butylpyrocarbonate $(4.8 \mathrm{~g}, 22 \mathrm{mmol})$ was added and stirring was continued at room temperature for 6 h . Then the solution was concentrated in vacuum to about 20-30 mL, cooled in an ice-water bath, covered with a layer of ethyl acetate (about 50 mL) and acidified with a dilute solution of KHSO_{4} to $\mathrm{pH} 2-3$ (Congo red). The aqueous phase was extracted with ethyl acetate and this operation was done repeatedly. The ethyl acetate extracts were pooled, washed with water and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under vacuum. The pure material was obtained as a waxy solid.

Yield: 4.87 g , (18.35 mmol, 91.78\%).
${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 500 \mathrm{MHz}, \delta$ in ppm); 12.75 (br, 1H, COOH); 7.28-7.09 (m, 5H, Ph-ring $-\mathrm{H}) ; 7.11-7.09\left(\mathrm{~m}\right.$, Phe NH); 4.09-4.01 (m, 1H, C ${ }^{\alpha} \mathrm{H}$ Phe); 3.02-2.87 (m, 2H, C ${ }^{\beta} \mathrm{H}$ Phe), 1.36 (s, 9H, Boc). ${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 125 \mathrm{MHz}, \delta$ in ppm): 173.57, 155.41, 138.00, $129.05,128.09,126.27,80.24,55.10,36.39,20.73$.
(b) Boc-Phe(1)-Gly(2)-OMe . $1.5 \mathrm{~g}(5.65 \mathrm{mmol})$ of Boc-Phe-OH was dissolved in 20 mL DCM in an ice-water bath. H-Gly-OMe was isolated from $1.44 \mathrm{~g}(11.5 \mathrm{mmol})$ of the corresponding methyl ester hydrochloride by neutralization and subsequent extraction with ethyl acetate and the ethyl acetate extract was concentrated to 10 mL . It was then added to the reaction mixture, followed immediately by $1.16 \mathrm{~g}(5.65 \mathrm{mmol})$ dicyclohexylcarbodiimide (DCC) and $764 \mathrm{mg}(5.65 \mathrm{mmol})$ of HOBt . The reaction mixture was allowed to come to room temperature and stirred for 48 h. DCM was evaporated and the residue was dissolved in ethyl acetate $(50 \mathrm{~mL})$ and dicyclohexylurea (DCU) was filtered off. The organic layer was washed with $2 \mathrm{M} \mathrm{HCl}(3 \times 50 \mathrm{~mL})$, brine $(2 \times 50 \mathrm{~mL}), 1(\mathrm{M})$ sodium carbonate $(3 \times 50 \mathrm{~mL})$ and brine ($2 \times 50 \mathrm{~mL}$) and dried over anhydrous sodium sulfate. It was evaporated under vacuum to yield Boc-Phe-Gly-OMe as a white solid.

Yield: $1.4 \mathrm{~g}(4.16 \mathrm{mmol}, 73.66 \%)$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$ in ppm): 7.26-7.24 (d, 2 H , Phe ring -H), 7.19-7.17 (m, 3H, Ph ring -H), 6.69-6.67 (m, $1 \mathrm{H}, \mathrm{Gly}(2) \mathrm{NH}$), 5.17-5.16 (m, 1H, Phe-NH), 4.40-4.39 (br, 1 H , Phe $\mathrm{C}^{\alpha} \mathrm{H}$), 4.01-3.94 (m, 2H, Gly $\mathrm{C}^{\alpha} \mathrm{H}$), 3.69 ($\mathrm{s}, 3 \mathrm{H},-\mathrm{OCH}_{3}$), 3.16-3.14 (m, 2 H , Phe $\mathrm{C}^{\beta} \mathrm{H}$), 1.36-1.34 (s, 9H, Boc - CH_{3}). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$ in ppm): 174.17, 170.44, 156.31, 136.86, 129.54, 128.26, 126.95, 80.2, 56.43, 56.4, 52.65, 38.54, 28.32, 24.76
(c) Boc-Phe(1)-Gly(2)-OH . To $1.1 \mathrm{~g}(3.26 \mathrm{mmol})$ of Boc-Phe-Gly-OMe, 15 mL MeOH and 2 (M) 4.5 mL NaOH were added and the progress of saponification was monitored by thin layer chromatography (TLC). The reaction mixture was stirred. After 10 h , methanol was removed under vacuum; the residue was dissolved in 50 mL of water and washed with diethyl ether (2 x 50 mL). Then the pH of the aqueous layer was adjusted to 2 using 1 M HCl and it was extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$). The extracts were pooled, dried over anhydrous sodium sulfate, and evaporated under vacuum to obtained compound as a waxy solid.

Yield: 1 g ($3.1 \mathrm{mmol}, 96.9 \%$).
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}, δ in ppm): 12.53-12.51 (br, $1 \mathrm{H},-\mathrm{COOH}$), 8.29-8.26 (m, 1 H, Gly(2) -NH), 7.26-7.19 (m, 5H, Ph ring -H) 6.89-6.88 (m, 1H, Phe-NH), 4.21-4.19 (m, 1 H, Phe $\mathrm{C}^{\alpha} \mathrm{H}$), 3.80 (m, 2H, Phe $\mathrm{C}^{\beta} \mathrm{H}$), 3.02-2.99 (m, 1 H , Gly $\mathrm{C}^{\alpha} \mathrm{H}$), 2.55-2.51 (m, 1H, Gly $\mathrm{C}^{\alpha} \mathrm{H}$), 1.31 ($\mathrm{s}, 9 \mathrm{H}$, Boc- CH_{3}). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$ in ppm): 174.20, 170.42, $156.29,136.86,129.54,128.26,126.95,80.2,56.43,52.67,38.54,28.32,24.72$.
(d) Boc-Phe(1)-Gly(2)-Phe(3)-OMe. 1 g (3.1 mmol) Boc-Phe-Gly-OH was dissolved in 5 mL of DMF in an ice-water bath. H-Phe-OMe 1.1 g (6.2 mmol) was isolated from the corresponding methyl ester hydrochloride by neutralization and subsequent extraction with ethyl acetate and the ethyl acetate extract was concentrated to 7 mL . Then it was added to the reaction mixture, followed immediately by $640 \mathrm{mg}(3.1 \mathrm{mmol})$ of dicyclohexylcarbodiimide (DCC) and $419 \mathrm{mg}(3.1 \mathrm{mmol})$ of HOBt . The reaction mixture was allowed to come to room temperature and then stirred for 72 h . The residue was taken in 30 mL ethyl acetate and dicyclohexylurea (DCU) was filtered off. The organic layer was washed with 2(M) HCL $(3 \times 50 \mathrm{~mL})$, brine $(2 \times 50 \mathrm{~mL})$, then $1(\mathrm{M})$ sodium carbonate $(3 \times 30 \mathrm{~mL})$ and brine $(2 \times 30 \mathrm{~mL})$ and dried over anhydrous sodium sulfate and evaporated under vacuum to yield the tripeptide

1 as a white solid. Purification was done by silica gel column (100-200 mesh size) with an ethyl acetate and hexane mixture $1: 2$ as the eluent.

Yield: 1.2 g ($2.73 \mathrm{mmol}, 88 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$ in ppm): 7.23-7.15 (m, 10H, Ph ring -H), 7.15-7.13 (m, 1 H , Phe-NH and 1H, Gly-NH), 5.42 (br, 1H, Phe-NH), 4.80-4.77 (m, 1H, Phe C ${ }^{\alpha}$ H), 4.01-3.95 (m, 1H, Phe C ${ }^{\alpha} \mathrm{H}$), 3.94-3.90 (m, 2H, Gly C ${ }^{\alpha} \mathrm{H}$), $3.63\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right.$), 3.10-3.08 (m, 2 H , Phe $\left.\mathrm{C}^{\beta} \mathrm{H}\right)$ 3.03-3.00 (m, 2 H , Phe $\left.\mathrm{C}^{\beta} \mathrm{H}\right), 1.34\left(\mathrm{~s}, 9 \mathrm{H}\right.$, Boc- $\left.\mathrm{CH}_{3}\right)$, ${ }^{13} \mathrm{CNMR}$ ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$ in ppm): 172.02, 171.74, 168.47, 156.24, 136.71, 129.56, 129.02, 127.39, 126.67, 79.89, 60.24, 55.62, 53.41, 52.14, 42.78, 38.26, 37.68, 29.51, 25.10, 14.02. ESIMS: $m / z 484.26,[\mathrm{M}+\mathrm{H}]^{+} ; \mathrm{M}_{\text {calcd }} 483.23$.

Synthesis of peptide 2:

(b) Boc-Phe(1)- $\boldsymbol{\beta}$-Ala(2)-OMe . $1.5 \mathrm{~g}(5.67 \mathrm{mmol})$ of Boc-Phe-OH was dissolved in 15 mL DCM in an ice-water bath. H- β-Ala-OMe was isolated from $1.17 \mathrm{~g}(11.34 \mathrm{mmol})$ of the corresponding methyl ester hydrochloride by neutralization and subsequent extraction with ethyl acetate and the ethyl acetate extract was concentrated to 10 mL . It was then added to the reaction mixture, followed immediately by $1.17 \mathrm{~g}(5.67 \mathrm{mmol})$ dicyclohexylcarbodiimide (DCC) and $766.1 \mathrm{mg}(5.67 \mathrm{mmol})$ of HOBt. The reaction mixture was allowed to come to room temperature and stirred for 48 h . DCM was evaporated and the residue was dissolved in ethyl acetate $(60 \mathrm{~mL})$ and dicyclohexylurea (DCU) was filtered off. The organic layer was washed with $2 \mathrm{M} \mathrm{HCl}(3 \times 50 \mathrm{~mL})$, brine $(2 \times 50 \mathrm{~mL})$, $1(\mathrm{M})$ sodium carbonate $(3 \times 50 \mathrm{~mL})$ and brine ($2 \times 50 \mathrm{~mL}$) and dried over anhydrous sodium sulfate. It was evaporated under vacuum to yield Boc-Phe-Gly-OMe as a white solid.

Yield: 1.3 g ($3.71 \mathrm{mmol}, 65.43 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$ in ppm): 7.24-7.19 (m, 2H, Ph ring -H), 7.16-7.12 (m, 3H, Ph ring -H), 6.69-6.67 (m, 1H, β-Ala -NH), 5.39-5.37 (m, 1H, Phe-NH), 4.30-4.27 (br, 1H, Phe $\mathrm{C}^{\alpha} \mathrm{H}$), 3.58-3.56 (s, $3 \mathrm{H},-\mathrm{OCH}_{3}$), 3.45-3.41 (m, 2H, β-Ala $\mathrm{C}^{\alpha} \mathrm{H}$), 2.97-2.96 (m, 2 H , Phe C^{β} H), 2.42-2.25 (m, 2H, β-Ala $\mathrm{C}^{\beta} \mathrm{H}$) 1.33 (s, 9 H, Boc- CH_{3}).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$ in ppm): 172.76, 171.75, 156.31, 137.13, 129.57, 129.79, $127.06,80.20,56.17,51.90,39.13,35.06,33.85,29.55$.
(c) Boc-Phe(1)- $\boldsymbol{\beta}-\mathrm{Ala}(\mathbf{2}) \mathbf{- O H}$. To $1.24 \mathrm{~g}(3.5 \mathrm{mmol})$ of Boc-Phe- β-Ala-OMe, 15 mL MeOH and $2(\mathrm{M}) 4.65 \mathrm{~mL} \mathrm{NaOH}$ were added and the progress of saponification was monitored by thin layer chromatography (TLC). The reaction mixture was stirred. After10 h, methanol was removed under vacuum; the residue was dissolved in 50 mL of water and washed with diethyl ether $(2 \times 50 \mathrm{~mL})$. Then the pH of the aqueous layer was adjusted to 2 using 1 M HCl and it was extracted with ethyl acetate $(3 \times 50 \mathrm{~mL})$. The extracts were pooled, dried over anhydrous sodium sulfate, and evaporated under vacuum to obtained compound as a waxy solid.

Yield: 1.11 g ($3.29 \mathrm{mmol}, 93.42 \%$).
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}, δ in ppm): 12.22-12.19 (br, $1 \mathrm{H},-\mathrm{COOH}$), 7.94-7.91 (br, 1 H , β-Ala(2) -NH), 7.27-7.22 (m, 5H, Phe ring -H) 6.86-6.84 (d, 1H, Phe-NH), 4.01-3.99 (m, 1 H, Phe $\mathrm{C}^{\alpha} \mathrm{H}$), 3.33-3.28 (m, 2H, Phe $\left.\mathrm{C}^{\beta}-\mathrm{H}\right), ~ 2.91-2.89\left(\mathrm{~m}, 1 \mathrm{H}, \beta\right.$-Ala $\left.\mathrm{C}^{\alpha} \mathrm{H}\right), 2.74-2.70(\mathrm{~m}, 1 \mathrm{H}$, β-Ala $\mathrm{C}^{\alpha} \mathrm{H}$), 2.35-2.32 (m, 2H, β-Ala $\mathrm{C}^{\beta} \mathrm{H}$) 1.29 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{BOC}-\mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\mathrm{CDCl}_{3}, \delta$ in ppm): $172.84,170.42,154.94,137.93,131.24,129.13,127.94,126.95,77.64$, 56.43, 52.67, 38.54, 28.32.
(d) Boc-Phe(1)- $\boldsymbol{\beta}$-Ala(2)-Phe(3)-OMe . 1.1 g (3.3 mmol) Boc-Phe- β-Ala-OH was dissolved in 5 mL of DMF in an ice-water bath. H-Phe-OMe $1.18 \mathrm{~g}(6.6 \mathrm{mmol})$ was isolated from the corresponding methyl ester hydrochloride by neutralization and subsequent extraction with ethyl acetate and the ethyl acetate extract was concentrated to 7 mL . Then it was added to the reaction mixture, followed immediately by $681 \mathrm{mg}(3.3 \mathrm{mmol})$ of dicyclohexylcarbodiimide (DCC) and $446 \mathrm{mg}(3.3 \mathrm{mmol})$ of HOBt. The reaction mixture was allowed to come to room temperature and then stirred for 72 h . The residue was taken in 30 mL ethyl acetate and dicyclohexylurea (DCU) was filtered off.The organic layer was washed with 2(M) HCL $(3 \times 50 \mathrm{~mL})$, brine $(2 \times 50 \mathrm{~mL})$, then $1(\mathrm{M})$ sodium carbonate $(3 \times 30 \mathrm{~mL})$ and brine $(2 \times 30 \mathrm{~mL})$ and dried over anhydrous sodium sulfate and evaporated under vacuum to yield the tripeptide $\mathbf{1}$ as a white solid. Purification was done by silica gel column (100-200 mesh size) with an ethyl acetate and hexane mixture 1:2 as the eluent.

Yield: $1 \mathrm{~g}(2 \mathrm{mmol}, 61 \%)$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$ in ppm): $7.23-7.14(\mathrm{~m}, 10 \mathrm{H}, 2$ phenyl ring protons and 1 H , Phe-NH), 6.84-6.83 (br, 1H, β-ala -NH), 6.51-6.49 (br, 1H, Phe-NH), 5.25-5.23 (m, 1H, Phe -NH), 4.82-4.79 (m, 1H, Phe $\mathrm{C}^{\alpha} \mathrm{H}$), 4.28 (br, 1 H , Phe $\mathrm{C}^{\alpha} \mathrm{H}$), 3.74 ($\mathrm{s}, 3 \mathrm{H},-\mathrm{OCH}_{3}$), 3.22-3.15 ($\mathrm{m}, 2 \mathrm{H}, \beta$-ala $\mathrm{C}^{\alpha} \mathrm{H}$), 3.14-2.96 (m, 2 H , Phe $\mathrm{C}^{\beta} \mathrm{H}$) 2.95-2.84 (m, 1 H , Phe $\mathrm{C}^{\beta} \mathrm{H}$) 2.38-2.24 (m, 1 H , Phe $\mathrm{C}^{\beta} \mathrm{H}$), 2.22-2.15 (m, $1 \mathrm{H}, \beta$-Ala $\mathrm{C}^{\beta} \mathrm{H}$), 2.00-1.98(m, $1 \mathrm{H}, \beta$-Ala $\mathrm{C}^{\beta} \mathrm{H}$), 1.37 (s, 9 H , $\mathrm{Boc}-\mathrm{CH}_{3}$).
${ }^{13} \mathrm{CNMR}$ ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$ in ppm): 173.01, 171.84, 172.37, 156.65, 137.62, 136.56, $129.05,128.79,128.47,127.22,127.01,79.96,57.25,55.60,53.36,52.14,39.42,38.22$, 37.81,30.78, 29.27. ESIMS: m / z 498.13, 498.18; $[\mathrm{M}+\mathrm{H}]^{+} ; \mathrm{M}_{\text {calcd }} 497.25$.

Synthesis of peptide 3:

(b) Boc-Phe(1)- $\boldsymbol{\gamma}$-Abu(2)-OMe. $1.5 \mathrm{~g}(5.67 \mathrm{mmol})$ of Boc-Phe-OH was dissolved in 15 mL DCM in an ice-water bath. H- γ-Abu-OMe was isolated from $1.7 \mathrm{~g}(11.34 \mathrm{mmol})$ of the corresponding methyl ester hydrochloride by neutralization and subsequent extraction with ethyl acetate and the ethyl acetate extract was concentrated to 10 mL . It was then added to the reaction mixture, followed immediately by $1.17 \mathrm{~g}(5.67 \mathrm{mmol})$ dicyclohexylcarbodiimide (DCC) and $766.1 \mathrm{mg}(5.67 \mathrm{mmol})$ of HOBt. The reaction mixture was allowed to come to room temperature and stirred for 48 h . DCM was evaporated and the residue was dissolved in ethyl acetate $(60 \mathrm{~mL})$ and dicyclohexylurea (DCU) was filtered off. The organic layer was washed with $2 \mathrm{M} \mathrm{HCl}(3 \times 50 \mathrm{~mL})$, brine $(2 \times 50 \mathrm{~mL}), 1(\mathrm{M})$ sodium carbonate $(3 \times 50 \mathrm{~mL})$ and brine ($2 \times 50 \mathrm{~mL}$) and dried over anhydrous sodium sulfate. It was evaporated in a vacuum to yield Boc-Phe- γ-Abu-OMe as a white solid.

Yield: 1.2 g ($3.29 \mathrm{mmol}, 58.07 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$ in ppm): 7.26-7.16 (m, 5 H , phenyl ring protons), 6.39 (br, $1 \mathrm{H}, \gamma-\mathrm{Abu}(2) \mathrm{NH}), 5.24(\mathrm{~s}, 1 \mathrm{H}$, Phe-NH$), 4.25\left(\mathrm{br}, 1 \mathrm{H}\right.$, Phe $\left.\mathrm{C}^{\alpha} \mathrm{H}\right), 3.61\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right)$, 3.22-3.20 (m, 2H, Phe C ${ }^{\beta}$ H), 3.00-2.97 (br, 2H, γ-Abu $\mathrm{C}^{\gamma} \mathrm{H}$), 2.17-2.15 (br, 2H, γ-Abu $\mathrm{C}^{\alpha} \mathrm{H}$), 1.67-1.65(br, 2H, γ-Abu C ${ }^{\beta} \mathrm{H}$) 1.36 (s, $9 \mathrm{H}, \mathrm{Boc}-\mathrm{CH}_{3}$), ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$ in
ppm): 173.96, 171.84, 155.83, 137.23, 129.69, 128.94, 127.22, 80.38, 51.98, 39.19, 34.32, 31.55, 30.04, 28.64, 26.02.
(c) Boc-Phe(1)- $\boldsymbol{\gamma}$-Abu(2)-OH. To $1.0 \mathrm{~g}(2.74 \mathrm{mmol})$ of Boc-Phe- γ-Abu-OMe, 15 mL MeOH and $2(\mathrm{M}) 3.70 \mathrm{~mL} \mathrm{NaOH}$ were added and the progress of saponification was monitored by thin layer chromatography (TLC). The reaction mixture was stirred. After10 h, methanol was removed under vacuum; the residue was dissolved in 50 mL of water and washed with diethyl ether $(2 \times 50 \mathrm{~mL})$. Then the pH of the aqueous layer was adjusted to 2 using $1(\mathrm{M}) \mathrm{HCl}$ and it was extracted with ethyl acetate $(3 \times 50 \mathrm{~mL})$. The extracts were pooled, dried over anhydrous sodium sulfate, and evaporated under vacuum to obtained compound as a waxy solid.

Yield : 850 mg (2.33 mmol, 85.12\%).
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}, δ in ppm): 12.02 (br, $1 \mathrm{H},-\mathrm{COOH}$), 7.86 (br, $1 \mathrm{H}, \gamma-\mathrm{Abu}(2)$ NH), 7.25-7.23 (m, 5 H , phenyl ring protons) $6.85-6.84(\mathrm{~d}, 1 \mathrm{H}, J=5$, Phe-NH), $4.06(\mathrm{~m}, 1 \mathrm{H}$, Phe $\mathrm{C}^{\alpha} \mathrm{H}$), 3.08-2.89 (m, 2H, Phe $\mathrm{C}^{\beta} \mathrm{H}$), 2.85-2.73 (m, 2H, γ-Abu $\mathrm{C}^{\gamma} \mathrm{H}$), 2.17-2.15 (t, 2H, γ abu $\mathrm{C}^{\alpha} \mathrm{H}$), 1.61-1.59 (m, 2H, γ-Abu $\mathrm{C}^{\beta} \mathrm{H}$), $1.30\left(\mathrm{~s}, 9 \mathrm{H}\right.$, Boc $-\mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\mathrm{CDCl}_{3}, \delta$ in ppm): 174.18, 171.42, 155.12, 138.11, 129.12, 128.07, 126.18, 77.91, 55.78, 39.00, 37.85, 30.44, 28.32, 26.72.
(d) Boc-Phe(1)- $\boldsymbol{\gamma}$-Abu(2)-Phe(3)-OMe. $840 \mathrm{mg}(2.3 \mathrm{mmol})$ Boc-Phe- $\gamma-\mathrm{Abu}-\mathrm{OH}$ was dissolved in 5 mL of DMF in an ice-water bath. H-Phe-OMe $896 \mathrm{mg}(5 \mathrm{mmol})$ was isolated from the corresponding methyl ester hydrochloride by neutralization and subsequent extraction with ethyl acetate and the ethyl acetate extract was concentrated to 7 mL . Then it was added to the reaction mixture, followed immediately by 475 mg (2.3 mmol) of dicyclohexylcarbodiimide (DCC) and $311 \mathrm{mg}(2.3 \mathrm{mmol})$ of HOBt. The reaction mixture was allowed to come to room temperature and then stirred for 72 h . The residue was taken in 30 mL ethyl acetate and dicyclohexylurea (DCU) was filtered off.The organic layer was washed with $2(\mathrm{M}) \mathrm{HCL}(3 \times 50 \mathrm{~mL})$, brine $(2 \times 50 \mathrm{~mL})$, then $1(\mathrm{M})$ sodium carbonate $(3 \times 30 \mathrm{~mL})$ and brine ($2 \times 30 \mathrm{~mL}$) and dried over anhydrous sodium sulfate and evaporated under vacuum to yield the tripeptide 1 as a white solid. Purification was done by silica gel column (100-200 mesh size) with an ethyl acetate and hexane mixture $1: 2$ as the eluent.

Yield : 480 mg ($0.91 \mathrm{mmol}, 39.7 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$ in ppm): 7.31-7.27 (m, 10H, 2 phenyl ring protons), 6.76 (br, 1 H, Phe -NH), 6.45 (br, 1H, Phe -NH), 5.18 (br, $1 \mathrm{H}, \gamma-\mathrm{Abu}-\mathrm{NH}$), 4.87 (m, 1H, Phe C ${ }^{\alpha}$ H), $4.29\left(\mathrm{~m}, 1 \mathrm{H}\right.$, Phe $\left.\mathrm{C}^{\alpha} \mathrm{H}\right)$, $3.75\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.24-3.21\left(\mathrm{~m}, 2 \mathrm{H}\right.$, Phe $\left.\mathrm{C}^{\beta} \mathrm{H}\right)$, 3.20-3.16 (m, 2 H , Phe $\mathrm{C}^{\beta} \mathrm{H}$), 3.12-3.06 (m, 2H, γ-Abu $\mathrm{C}^{\gamma} \mathrm{H}$), 2.10-2.05 (m. 2H, γ-Abu $\mathrm{C}^{\alpha} \mathrm{H}$), 1.75-1.72(m, $2 \mathrm{H}, \gamma$-Abu $\mathrm{C}^{\beta} \mathrm{H}$), 1.42 (s, $9 \mathrm{H}, \mathrm{Boc}-\mathrm{CH}_{3}$).
${ }^{13} \mathrm{CNMR}$ ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$ in ppm): 177.79, 174.03, 172.83, 158.58, 139.36, 131.06, $130.75,129.07,128.13,127.89,126.46,80.15,58.29,57.72,39.92,38.19,37.97,32.48$, 31.86, 29.21, 24.73, 23.44. ESIMS: $m / z 534.19,\left[^{M}+\mathrm{Na}\right]^{+}$; $\mathrm{M}_{\text {calcd }} 511.26$.

Figure S1: ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d6) spectra of Boc-Phe-OH.

Figure S2: ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}) spectra of Boc-Phe-OH.

Figure S3: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of Boc-Phe-Gly-OMe.

Figure S4: ${ }^{13} \mathrm{C} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of Boc-Phe-Gly-OMe.

Figure S5: ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d6) of Boc-Phe-Gly-OH.

Figure S6: ${ }^{13} \mathrm{C}$ NMR(125 MHz , DMSO- d_{6}) of Boc-Phe-Gly-OH.

Figure S7: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Boc-Phe-Gly-Phe-OMe.

Figure S8: ${ }^{13} \mathrm{C}$ NMR($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Boc-Phe-Gly-Phe-OMe.

Figure S9: Mass Spectra of Boc-Phe-Gly-Phe-OMe.

Figure S10: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Boc-Phe- β-Ala-OMe.

Figure S11: ${ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of Boc-Phe- β-Ala-OMe.

Figure S12: ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d6) of Boc-Phe- β-Ala-OH.

Figure S13: ${ }^{13} \mathrm{C}$ NMR(125 MHz , DMSO- d_{6}) of Boc-Phe- β-Ala-OH.

Figure S14: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of Boc-Phe- β-Ala-Phe-OMe.

Figure S15: ${ }^{13} \mathrm{C}$ NMR($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Boc-Phe- β-Ala-Phe-OMe.

Figure S16: Mass spectra of Boc-Phe- β-ala-Phe-OMe.

Figure S17: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of Boc-Phe- γ-Abu-OMe.

Figure S18: ${ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Boc-Phe- γ-Abu-OMe.

Figure S19: ${ }^{1} \mathrm{H}$ NMR(500 MHz , DMSO-d6) of Boc-Phe- $\gamma-\mathrm{Abu}-\mathrm{OH}$.

Figure S20: ${ }^{13} \mathrm{C}$ NMR(125 MHz , DMSO- d_{6}) of Boc-Phe- γ-Abu-OH.

Figure S21: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Boc-Phe- γ-Abu-Phe-OMe.

Figure S22: ${ }^{13} \mathrm{C}$ NMR(125 MHz, CDCl_{3}) of Boc-Phe- γ-Abu-Phe-OMe.

Figure S23: Mass spectra of Boc-Phe- γ-Abu-Phe-OMe.

