Supporting Information for

Binaphthyl-based Molecular Barrier Materials for Phosphoric Acid Poisoning in High-Temperature Proton Exchange Membrane Fuel Cells

Dong-Cheol Jeong,^{1,#} Bohyun Mun,^{2,#} Hyekyung Lee,¹ Seung Jun Hwang,^{3,§} Sung Jong Yoo,³ EunAe Cho,⁴ Yunmi Lee^{*,2} and Changsik Song^{*,1}

¹Department of Chemistry, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea. ²Department of Chemistry, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea. ³Korea Institute of Science and Technology, 5 Hwarangro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea. ⁴Department of Materials Science & Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.

Email: ymlee@kw.ac.kr and songcs@skku.edu

- ✓ Figure S1. Comparisons of cyclic voltammograms in an N₂-purged 0.1 M HClO₄ solution with 0.01 M H₃PO₄ at a scan rate of 50 mV s⁻¹.
- ✓ Table S1. ECSA and kinetic current densities at 0.8 V vs. RHE
- ✓ Figure S2. Comparisons of cyclic voltammograms with different dipping times in an N₂-purged 0.1 M HClO₄ solution with 0.01 M H₃PO₄ at a scan rate of 100 mV s⁻¹.
- ✓ Figures S3 and S4. ¹H and ¹³C NMR spectra of compound 2a
- ✓ Figures S5 and S6. ¹H and ¹³C NMR spectra of compound BNSH
- ✓ Figure S7 and S8. ¹H and ¹³C NMR spectra of compound 2b
- ✓ Figure S9 and S10. ¹H and ¹³C NMR spectra of compound C2-BNSH
- ✓ Figure S11 and S12. ¹H and ¹³C NMR spectra of compound 2c
- ✓ Figure S13 and S14. ¹H and ¹³C NMR spectra of compound C12-BNSH
- ✓ Figure S15 and S16. ¹H and ¹³C NMR spectra of compound 2d
- ✓ Figure S17 and S18. ¹H and ¹³C NMR spectra of compound BN-1-SH
- ✓ Figure S19 and S20. ¹H and ¹³C NMR spectra of compound NASH
- ✓ Figure S21 and S22. ¹H and ¹³C NMR spectra of compound BNCN

Figure S1. Comparisons of cyclic voltammograms in an N_2 -purged 0.1 M HClO_4 solution with 0.01 M H_3PO_4 at a scan rate of 50 mV s^{-1}

	specific ECSA	j	j_k
	$(m^2 g^{-1}Pt)$	(mA cm ⁻² at +0.80 V)	(mA cm ⁻² at +0.80 V)
Pt	24.0	5.6	22.1
Pt_PA^b	22.4	4.5	11.0
Pt_BNSH_PA	23.0	5.5	20.4
Pt_BNCN_PA	22.8	5.3	17.0
Pt_BN-1-SH_PA	24.1	5.2	16.4
Pt_C12-BNSH_PA	21.9	5.0	14.9
Pt_C2-BNSH_PA	21.1	4.8	12.9
Pt_NSH_PA	20.1	3.6	6.9

Table S1. Electrochemically active surface area (ECSA) and kinetic current densities at 0.8 V vs. RHE^{*a*}

^{*a*}The ORR activities were measured in 0.1 M HClO₄ and 0.01 M H₃PO₄ solutions under O₂ using a glassy carbon rotating disk electrode (RDE) at a rotation and sweep rates of 1600 rpm and 10 mV s⁻¹, respectively.

^{*b*}PA: Phosphoric acid (0.01 M).

Figure S2. Comparisons of cyclic voltammograms with different dipping times in an N_2 -purged 0.1 M HClO₄ solution with 0.01 M H₃PO₄ at a scan rate of 100 mV s⁻¹.

■ ¹H NMR and ¹³C NMR spectra for all products:

Figure S4. ¹³C NMR spectrum of compound 2a

Figure S5. ¹H NMR spectrum of compound BNSH

Figure S6. ¹³C NMR spectrum of compound BNSH

Figure S7. ¹H NMR spectrum of compound 2b

Figure S8. ¹³C NMR spectrum of compound 2b

Figure S9. ¹H NMR spectrum of compound C2-BNSH

Figure S10. ¹³C NMR spectrum of compound C2-BNSH

Figure S11. ¹H NMR spectrum of compound 2c

Figure S12. ¹³C NMR spectrum of compound 2c

Figure S13. ¹H NMR spectrum of compound C12-BNSH

Figure S14. ¹³C NMR spectrum of compound C12-BNSH

Figure S15. ¹H NMR spectrum of compound 2d

Figure S16. ¹³C NMR spectrum of compound 2d

Figure S17. ¹H NMR spectrum of compound BN-1-SH

Figure S18. ¹³C NMR spectrum of compound BN-1-SH

Figure S19. ¹H NMR spectrum of compound NASH

Figure S21. ¹H NMR spectrum of compound BNCN

Figure S22. ¹³C NMR spectrum of compound BNCN