Electronic Supplementary Information

Close insights into the growth pattern of palladium nanocubes with controllable sizes

Jianzhou Wu ${ }^{a}$, Jing Zhao ${ }^{a}$, Hehe Qian ${ }^{a}$, Lei Yue ${ }^{b}$, Yongsheng Guo ${ }^{a, *}$, and Wenjun Fang ${ }^{a, *}$
${ }^{a}$ Department of Chemistry, Zhejiang University, Hangzhou 310058, China
${ }^{b}$ Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China

*To whom correspondence should be addressed
E-mail: fwjun@zju.edu.cn (W. Fang); wjjw@zju.edu.cn (Y. Guo).

Calculation of Electrochemical Details for Typical Synthesis Procedure. The conditional reduction potential E_{AA} for AA in equation 3 can be described as follows (modified from reference 35):

$$
\begin{equation*}
E_{\mathrm{AA}}^{\prime}=0.553-\frac{R T}{F} \mathrm{pH}+\frac{R T}{F} \ln \frac{\left[A A_{\mathrm{O}}^{-}\right]}{\left[A A_{\mathrm{R}}^{-}\right]}+\frac{R T}{2 F} \ln \frac{K_{\mathrm{O}}}{K_{\mathrm{R}}}-\frac{R T}{2 F} \ln \frac{K_{\mathrm{O}}+\left[H^{+}\right]}{K_{\mathrm{R}}+\left[H^{+}\right]} \tag{S1}
\end{equation*}
$$

where $\left[A A_{\mathrm{O}}{ }^{-}\right]$and $\left[A A_{\mathrm{R}}{ }^{-}\right]$indicate the equilibrium concentrations of AA in oxidative and reductive states, respectively. K_{O} and K_{R} are the first dissociation constants of the oxidized and reduced AA, respectively. Because of its weak acidity, AA with the oxidative form can be considered as a monovalent acid, and the values of $p K_{\mathrm{O}}$ and $p K_{\mathrm{R}}$ are given as 9.0 and 4.17. Considering the dosage of AA and ignoring the influence of other ions, the initial pH of the reaction system is 2.82 .

Under typical synthesis procedure, when the reduction process is complete, the equilibrium concentrations of $\left[\mathrm{PdCl}_{4}\right]^{2-}, \mathrm{Cl}^{-},\left[\mathrm{AA}_{\mathrm{O}}\right]^{-}$, and $\left[\mathrm{AA}_{\mathrm{R}}\right]^{-}$are calculated to be $1.008 \mathrm{8} 10^{-6}, 8.008 \mathrm{8} 10^{-2}$, 2.00810^{-2}, and $1.41810^{-2} \mathrm{~mol} / \mathrm{L}$, respectively. Hence, the value of E_{AA}^{\prime} is 0.306 V , and the conditional reduction potential for $\left[\mathrm{PdCl}_{4}\right]^{2-/} \mathrm{Pd}$ is 0.534 V .

Calculation of the Mole Fraction of Br in a Pd Nanocube. Because of the close values of the size of $\mathrm{Br}^{-}\left(r_{\mathrm{Br}}\right)$ and the distance of $\mathrm{Pd}(200)$ faces $(0.5 a)$, we define $2 r_{\mathrm{Br}}$ to be equal to a for simplification. Hence, the value for lattice constant of Pd is a. For a Pd nanocube with edge length of n, the number of atoms on surfaces is N, and the total amount of Pd atoms in the cube is N_{Pd}

$$
\begin{equation*}
N=2 \times 6 \times \underset{a}{\stackrel{n}{-})^{2}}=\frac{12 n^{2}}{a^{2}} \tag{S2}
\end{equation*}
$$

$$
\begin{equation*}
N_{\mathrm{Pd}}=4 \times \underset{\underset{a}{(-)}}{ }{ }^{3}=\frac{4 n^{3}}{a^{3}} \tag{S3}
\end{equation*}
$$

According to Scheme 2, every two Pd atoms possess one Br^{-}, and the number of Br^{-}on cubic surface is N_{Br}.

$$
\begin{equation*}
N_{\mathrm{Br}}=\frac{1}{2} N=\frac{6 n^{2}}{a^{2}} \tag{S4}
\end{equation*}
$$

Consequently, the mole fraction Br^{-}in Pd cube is χ.

$$
\begin{equation*}
\chi=\frac{N_{\mathrm{Br}}}{N_{\mathrm{Pd}}}=\frac{3 a}{2 n} \tag{S4}
\end{equation*}
$$

DFT Calculations. To analysis the properties of different Pd low-index facets, First-principle DFT calculations were employed with the pseudo-potential plane-wave method. Three different facets with 5 layer atomic thickness, namely $\{100\},\{110\}$ and $\{111\}$, were cleaved and covered by a vacuum slab of $10 \AA$. The geometries are full optimized via generalized gradient approximation (GGA) with Perdew-Burke-Ernzerhof (PBE) approximation ${ }^{1}$. The k-point was defined at $2 \times 2 \times 1$. The calculations of electron density maps (Scheme S1) were performed with CASTEP ${ }^{2}$.

To study the physical adsorption behavior of Br^{-}onto the top layer of $\mathrm{Pd}\{100\}$ facet, classical grand canonical Monte Carlo (GCMC) simulations were applied through Adsorption Locator module ${ }^{3,4}$. The simulations were performed with the standard universal force field (UFF) in the temperature range of $300-500 \mathrm{~K}$. The Br^{-}was adsorbed onto the octahedral cavity (Scheme S2) with adsorption energy of $-0.8863 \mathrm{kcal} / \mathrm{mol}$.

Fig. S1. HRTEM images of twinned crystals generated while preparing Pd nanocubes: (A) decahedron, (B) icosahedron, (C) triangular bipyramid and (D) pentagonal rod. Images inserted indicate the corresponding FFT pattern of each structure.

Fig. S2. TEM images of Pd nanocrystals reacted for (A) 3, (B) 7 and (C) 10 h under typical synthesis procedure. Scale bar: 50 nm .

Fig. S3. TEM images of Pd nanocrystals prepared under typical synthesis procedure where KBr was replaced by same concentrations of $(\mathbf{A}) \mathrm{KI}$ or $(\mathbf{B}) \mathrm{KCl}$, or same amount of $(\mathbf{C}) \mathrm{K}_{2} \mathrm{PdBr}_{4}$ was occupied instead of $\mathrm{K}_{2} \mathrm{PdCl}_{4}$. Scale bar: 50 nm .

Fig. S4. TEM images of Pd nanostructures obtained with different concentrations of $\mathrm{KBr}(\mathrm{mmol} / \mathrm{L})$:
(A) 630 ,
(B) 315, (C) 158,
(D) 78.8 to
(E) 0 . Scale bar: 20 nm . (Width: the mean width of nanostructures; Avg. L / W : the average aspect ratio.)

Fig. S5. TEM image and size distribution of Pd nanocubes gained with the concentration of KBr at $1.26 \mathrm{~mol} / \mathrm{L}$.

Fig. S6. TEM images of as-synthesized Pd nanoparticles based on the concentrations of reagents in

Table S 1 with AA as reducing agent and KBr as capping agent. Scale bar: 50 nm .

Table S1. Reagent concentrations for each reaction.

Items		Dosage of $\mathrm{KBr} / \mathrm{mmol} / \mathrm{L}$					
		0	67.2	134	269	538	1.08×10^{3}
300B\vdots4000000	22.7	1	2	3	4	5	6
	45.4	7	8	9	10	11	12
	90.8	13	14	15	16	17	18
	182	19	20	21	22	23	24
	363	25	26	27	28	29	30
	728	31	32	33	34	35	36

Scheme S1. Electron density map of (A) $\{100\}$, (B) $\{111\}$ and (C) $\{110\}$ Pd facets gained through primary DFT calculation.

Scheme S2. Schematic illustration of one Br^{-}adsorbed onto $\mathrm{Pd}\{100\}$ facet.

REFERENCES

1. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865-3868.
2. S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. Probert, K. Refson and M. C. Payne, Zeitschrift für Kristallographie-Crystalline Materials, 2005, 220, 567-570.
3. D. Liu, H. Wu, S. Wang, Z. Xie, J. Li and W. Lin, Chem. Sci., 2012, 3, 3032-3037.
4. S. S. Rath, N. Sinha, H. Sahoo, B. Das and B. K. Mishra, Appl. Surf. Sci., 2014, 295, 115-122.
