Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Novel nonplanar and rigid fluorophores with intensive emission in water and the

application in two-photon imaging of live cells

Jingwen Zhang,^a Chao Wang,^b Lei Zhang,^a Huijing Wu,^a Yi Xiao,^{*,b} Yufang Xu, ^a Xuhong Qian ^a and Weiping Zhu^{*,a}

a. State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China. E-mail: wpzhu@ecust.edu.cn

b. State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China. E-mail: xiaoyi@dlut.edu.cn

Contents

- 1. Materials and instruments
- 2. Synthesis and characterization
- 3. X-ray crystal structure determination of FM2
- 4. Photophysical properties
- 5. Cell imaging
- 6. NMR and HRMS spectra
- 7. References

1. Materials and Instruments

All solvents (AR, analytical reagent grade) are commercially available and were used without further purification. ¹H NMR spectra and ¹³C NMR spectra were recorded in CDCl₃, CD₃OD and DMSO- d_6 ; TMS as internal standard at 25 °C on a Bruker AV-400 spectrometer. pH titration was carried out by using a pH-Meter PB-10. All reactions were monitored by thin-layer chromatography (TLC) using UV-light (254 nm) and Flu-light (365nm). Mass spectra Electrospray ionization (ESI) mass spectrometry was carried out in a HP 1100 LC-MS spectrometer. Deionized water was prepared with a Millipore Milli-Q A10 super-water system. Silica gel (300–400 mesh, Qingdao Haiyang Chemical Co., Ltd.) was used for column chromatography. All reagents were obtained commercially and used without further purification unless stated otherwise.

Bioassay: MCF-7 (human breast carcinoma) cells were obtained from Institute of Basic Medical Sciences (IBMS) of Chinese Academy of Medical Sciences (CAMS). Fluorescence imaging was acquired on an Olympus FV1000 confocal microscope.

2. Synthesis and characterization

Scheme S1. Synthetic routes toward compound FM1, FM2, and FM3. (a) n-butylamine, ethanol, reflux, 2 h; (b) 2-(2-aminoethoxy)ethanol, ethanol, reflux, 2 h; (c) 2-morpholinoethanamine, ethanol, reflux, 2 h; (d) diethanolamine, CH₃OCH₂CH₂OH, reflux, 7 h.

6-Bromo-2-butyl-7-nitro-1H-benzo[de]isoquinoline-1,3(2H)-dione (M4-1)¹

To a solution of compound **M3** (100 mg, 0.31 mmol) in ethanol (10 mL) was added n-butylamine (23 mg, 0.31 mmol) dissolved in 5 mL ethanol dropwise under 50 °C. Then the reaction was stirred under reflux for 2 h. After that, the mixture was evaporated in vacuum to get residue, which was purified successively by silica gel column chromatography (DCM/MeOH = 200/1, v/v) and recrystallization in ethanol to give pale yellow solid **M4-1** (51 mg, yield: 49%). Melting point: 175.4-176.2 °C.

¹H NMR (400 MHz, DMSO-*d*₆): δ 8.63 (d, *J* = 8.0 Hz, 1H), 8.44 (d, *J* = 8.0 Hz, 1H), 8.40 (d, *J* = 6.8 Hz, 1H), 8.39 (d, *J* = 7.6 Hz, 1H), 4.03 (t, *J* = 7.6 Hz, 2H), 1.66-1.59 (m, 2H), 1.41-1.32 (m, 2H), 0.92 (t, *J* = 7.6 Hz, 3H). HRMS (EI) calcd for C₁₆H₁₃N₂O₄Br [M]⁺: 378.0038; found: 378.0042.

8-Butyl-4-(2-hydroxyethyl)-3,4-dihydropyrido[3',4',5':4,5]naphtho[1,8-ef][1,4]oxazepine-7,9(2H,8H)-dione (FM1)

Compound M4-1 (377 mg, 1.00 mmol) and diethanolamine (1.70 mL, 17.7 mmol) were mixed in 3.5 mL 2-methoxyethanol and refluxed for 7 h. The resulting reaction was cooled down to room temperature and extracted with dichloromethane (30 mL × 3). The organic layers were collected, washed with saturated brine (30 mL) and dried with anhydrous Na₂SO₄ and evaporated under vacuum to give residue. The remaining residue was separated by silica gel column chromatography (DCM/MeOH = 50/1, v/v) to yield orange solid FM1 (103 mg, yield: 29%). Melting point: 175.4-175.5 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.33 (d, *J* = 6.4 Hz, 1H), 8.21 (d, *J* = 7.2 Hz, 1H), 7.10 (d, *J* = 6.4 Hz, 1H), 7.02 (d, *J* = 7.2 Hz, 1H),

4.96 (t, J = 4.0 Hz, 1H), 4.64 (t, J = 3.8 Hz, 2H), 3.99 (t, J = 6.0 Hz, 2H), 3.85 (t, J = 3.8 Hz, 2H), 3.78-3.74 (m, 4H), 1.60-1.54 (m, 2H), 1.36-1.28 (m, 2H), 0.91 (t, J = 6.0 Hz, 3H). ¹³C NMR (100 MHz, DMSO- d_6): δ 163.1, 162.8, 161.6, 153.7, 132.9, 132.9, 115.8, 115.2, 114.7, 109.4, 108.4, 73.8, 57.7, 55.3, 54.4, 38.8, 29.7, 19.8, 13.7. HRMS (ESI) calcd for C₂₀H₂₂N₂O₄ [M+H]⁺: 355.1658; found: 355.1653. C₂₀H₂₂N₂O₄ (354.40) calcd (%): C 67.78, H 6.26, N 7.90; found: C 67.73, H 6.15, N 7.92.

6-Bromo-2-(2-(2-hydroxyethoxy)ethyl)-7-nitro-1H-benzo[de]isoquinoline-1,3(2H)-dione (M4-2)²

To a solution of compound **M3** (2.00 g, 6.2 mmol) in ethanol (50 mL) was added 2-(2-aminoethoxy)ethanol (616 μ L, 6.2 mmol) dissolved in 15 mL ethanol dropwise under 50 °C. Then the reaction was stirred under reflux for 2 h. After that, the mixture was evaporated in vacuum to get residue, which was purified by silica gel column chromatography (DCM/MeOH = 200/1, v/v) to give pale yellow solid **M4-2** (835 mg, yield: 33%). Melting point: 176.4-176.9 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.71 (d, *J* = 4.0 Hz, 1H), 8.52 (d, *J* = 4.0 Hz, 1H), 8.21 (d, *J* = 4.0 Hz, 1H), 7.93 (d, *J* = 4.0 Hz, 1H), 4.44 (t, *J* = 5.6 Hz, 2H), 3.86 (t, *J* = 5.6 Hz, 2H), 3.67-3.69 (m, 2H), 3.63-3.65 (m, 2H), 2.08 (s, 1H). HRMS (ESI)

calcd for $C_{16}H_{14}N_2O_6Br$ [M+H]⁺: 409.0035; found: 409.0029.

8-(2-(2-Hydroxyethoxy)ethyl)-4-(2-hydroxyethyl)-3,4-dihydropyrido[3',4',5':4,5]naphtho[1,8-ef][1,4]oxazepine-7,9(2H,8H)-dione (FM2)

Compound M4-2 (200 mg, 0.488 mmol) and diethanolamine (472 μ L, 4.88 mmol) were mixed in 3.5 mL of 2-methoxyethanol and refluxed for 7 h. The resulting reaction was cooled down to room temperature and extracted with dichloromethane (30 mL × 3). The organic layers were collected, washed with saturated brine (30 mL) and dried with anhydrous Na₂SO₄ and

evaporated under vacuum to give residue. The remaining residue was separated by silica gel column chromatography (DCM/MeOH = 100/1, v/v) to yield orange solid FM2 (102 mg, yield: 54%). Melting point: 108.4-109.0 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.48 (d, J = 8.4 Hz, 1H), 8.39 (d, J = 8.8 Hz, 1H), 7.12 (d. J = 8.0 Hz, 1H), 6.88 (d. J = 8.8 Hz, 1H), 4.65 (t. J = 5.0 Hz, 2H), 4.41 (t, J = 5.6 Hz, 2H), 4.02 (t, J = 5.2 Hz, 2H), 3.81-3.85 (m, 6H), 3.67-3.69 (m, 6H), 3.64H). ¹³C NMR (100 MHz, CDCl₃-CD₃OD): δ 164.7, 164.6, 161.8, 153.9, 133.8, 133.7, 133.3, 116.6, 115.9, 115.8, 110.8, 108.6, 73.7, 72.4, 68.6, 61.4, 58.8, 55.6, 55.2, 39.4. HRMS (ESI) calcd for $C_{20}H_{23}N_2O_6$ [M+H]⁺: 387.1556; found:

6-Bromo-2-(2-morpholinoethyl)-7-nitro-1H-benzo[de]isoquinoline-1,3(2H)-dione (M4-3)

To a solution of compound M3 (2.00 g, 6.21 mmol) in ethanol (50 mL) was added 2-morpholinoethanamine (808 mg, 6.21 mmol) dissolved in 15 mL ethanol dropwise under 50 °C. Then the reaction was stirred under reflux for 2 h. After that, the mixture was evaporated in vacuum to get residue, which was purified by silica gel column chromatography (DCM/MeOH = 200/1, v/v) to give pale yellow solid M4-3 (1.05 g, yield: 39%). Melting point: 200.7-201.1 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.70 (d, J = 7.6 Hz, 1H), 8.51 (d, J = 8.0 Hz, 1H), 8.22 (d, J = 8.0 Hz, 1H), 7.93 (d, J = 7.6 Hz, 1H), 4.33 (t, J = 6.2 Hz, 2H), 3.65 (br, 4H), 2.70 (t, J = 6.2 Hz, NO₂ 2H), 2.57 (br, 4H). ¹³C NMR (100 MHz, CDCl₃): δ 162.8, 162.1, 151.3, 136.0, 132.3, 131.2, 130.6, 125.7, 124.2, 123.6, 122.4, 121.2, 67.0, 55.9, 53.8, 37.7. HRMS (ESI) calcd for C₁₈H₁₇N₃O₅Br [M+H]⁺: 434.0352; found: 434.0344.

4-(2-Hydroxyethyl)-8-(2-morpholinoethyl)-3,4-dihydropyrido[3',4',5':4,5]naphtho[1,8ef][1,4]oxazepine-7,9(2H,8H)-dione (FM3)

Compound M4-3 (100 mg, 0.230 mmol) and diethanolamine (221 µL, 2.30 mmol) were mixed in 2.5 mL 2-methoxyethanol and refluxed for 7 h. The resulting reaction was cooled down to room temperature and extracted with dichloromethane (20 mL \times 3). The organic layers were collected, washed with saturated brine (20 mL) and dried with anhydrous Na₂SO₄ and evaporated under vacuum to give residue. The remaining residue was separated by silica gel column chromatography (DCM/MeOH = 100/1, v/v) to yield orange solid FM3 (56 mg, yield: 59%). Melting point: 213.2-215.7 °C. ¹H NMR (400 MHz, DMSO- d_6): δ

8.33 (d, J = 8.0 Hz, 1H), 8.20 (d, J = 8.8 Hz, 1H), 7.11 (d, J = 8.0 Hz, 1H), 7.02 (d, J = 8.0J = 8.8 Hz, 1H), 4.98 (br, 1H), 4.65 (t, J = 4.6 Hz, 2H), 4.13 (t, J = 7.0 Hz, 2H), 3.85 (t, J = 4.6Hz, 2H), 3.75 (br, 4H), 3.53 (br, 4H), 2.54-2.51 (m, 2H), 2.45 (bs, 4H). ¹³C NMR (100 MHz, DMSO- d_6): δ 163.1, 162.8, 161.6, 153.8, 132.9, 115.8, 115.1, 114.6, 109.3, 108.4, 73.8, 66.2, 57.7, 55.7, 55.3, 54.4, 53.4, 36.3. HRMS (ESI) calcd for $C_{22}H_{26}N_3O_5$ [M+H]⁺ 412.1872; found: 412.1881.

FM1

Table S1. 1D and 2D NMR data of compound FM1 in DMSO-d₆

No	1118 multi $(I/II-)$	13Ch S	COSV	IIMOC		DEPT	DEPT
INO. $^{1}\mathrm{H}^{a}$	$^{1}\text{H}^{*}\text{O}_{\text{H}}$, multi. (J /HZ)	¹³ C ⁶ 0 _C	0051	пмQC	пивс	135	90
1	0.91, 3H, t (6.0)	13.7	H ₂	C ₁	C ₁₋₃	+	
2	1.28-1.36, 2H, m	19.8	H_1,H_3	C_2	C ₁₋₄		
3	1.54-1.60, 2H, m	29.7	H_2,H_4	C ₃	C ₁₋₄		
4	3.99, 2H , t (6.0)	38.8	H ₃	C_4	C ₂ , C ₃ C ₅ /C ₁₅		
5		163.1					
6		114.7					
7	8.33, 1H, d (6.4)	132.9	H_8	C ₇	C ₇ , C ₉	+	+
8	7.10, 1H, d (6.4)	115.8	H_7	C_8	C ₉ , C ₁₆	+	+
9		161.6					
10		109.4					
11		153.7					
12	7.02, 1H, d (7.2)	108.4	H ₁₃	C ₁₂	C_{10} , C_{14}	+	+
13	8.21, 1H, d (7.2)	132.9	H_{12}	C ₁₃	C ₁₁₋₁₃ , C ₁₅	+	+
14		114.7					
15		162.8					
16		115.2					
17	4.64, 2H, t (3.8)	73.8	H_{18}	C ₁₇	C ₉		
18	3.85, 2H, t (3.8)	54.4	H_{17}	C ₁₈	C ₁₁		
19	271278 1H m	57.7		C ₁₉	C_{11} , C_{20}		
20	э./ 4- 3./8, 4п, Ш	55.3	OH	C ₂₀	C ₁₉		
OH	4.96, 1H, t (4.0)		H ₂₀				

^a recorded at 400 MHz, ^b recorded at 100 MHz

Fig. S1. HMQC spectrum of FM1 (DMSO-*d*₆)

Fig. S2. HMBC spectrum of FM1 (DMSO-*d*₆)

Fig. S3. ¹H-¹H COSY spectrum of FM1 (DMSO-*d*₆)

Fig. S4. DEPT 135 spectrum of FM1 (DMSO-*d*₆)

Fig. S5. DEPT 90 spectrum of FM1 (DMSO-*d*₆)

3. X-ray crystal structure determination of FM2

Fig. S6. Crystal structure of **FM2**. a) Thermal ellipsoid drawing of top view at 30% probability level, those unlabeled balls represent hydrogen atoms. b) Thermal ellipsoid drawing of top view at 30% probability level without hydrogen atoms. c) Packing structure along b-axis. Therein colour coding is as follows: C (gray), H (green), O (red), N (blue).

 Table S2. Crystal data and structure refinement for FM2.

Empirical formula	$C_{20}H_{22}N_2O_6$							
Formula weight	386.39	386.39						
Temperature	293(2) K	293(2) K						
Wavelength	0.71073 Å							
Crystal system	Orthorhombic							
Space group	P b c a							
Unit cell dimensions	a = 11.177(4) Å	a= 90°.						
	b = 10.727(4) Å	b= 90°.						
	c = 29.751(11) Å	$g = 90^{\circ}$.						
Volume	3567(2) Å ³							
Z	8							
Density (calculated)	1.439 Mg/m ³							
Absorption coefficient	0.107 mm ⁻¹							
F(000)	1632	1632						
Crystal size	0.160 x 0.110 x 0.060 n	0.160 x 0.110 x 0.060 mm ³						
Theta range for data collection	2.279 to 24.998°.	2.279 to 24.998°.						
Index ranges	-13<=h<=13, -12<=k<=	=10, -35<=l<=32						
Reflections collected	18539							
Independent reflections	3143 [R(int) = 0.1857]	3143 [R(int) = 0.1857]						
Completeness to theta = 25.242°	97.4 %	97.4 %						
Absorption correction	Semi-empirical from eq	uivalents						
Max. and min. transmission	0.7456 and 0.6098	0.7456 and 0.6098						
Refinement method	Full-matrix least-square	Full-matrix least-squares on F ²						
Data / restraints / parameters	3143 / 0 / 256	3143 / 0 / 256						
Goodness-of-fit on F ²	1.018							
Final R indices [I>2sigma(I)]	R1 = 0.0687, wR2 = 0.1	R1 = 0.0687, WR2 = 0.1290						
R indices (all data)	R1 = 0.1455, wR2 = 0.1	R1 = 0.1455, wR2 = 0.1587						
Extinction coefficient	0.0042(14)	0.0042(14)						
Largest diff. peak and hole	0.335 and -0.238 e.Å ⁻³	0.335 and -0.238 e.Å ⁻³						

4. Photophysical properties

4.1 Absorption and emission spectra

Absorption and emission spectra were performed at identical condition (25 °C) with a Varian Cary 100 spectrometer and a Varian Cary Eclipse fluorescence spectrometer, respectively.

4.2 Fluorescence quantum yield

Fluorescein was utilized as a standard sample with known quantum yield ($\Phi_s = 0.79$) in 0.1 M NaOH aqueous solution³. The relative fluorescence quantum yields were calculated according to the following equation⁴³²

$$\Phi_x = \Phi_s (Grad_x/Grad_s) (n_x^2/n_s^2)$$

Where the subscripts x and s represent test and standard respectively, Φ means fluorescence quantum yield, *Grad* denotes the gradient from the plot of integrated fluorescence intensity vs absorbance, and n is the refractive index of the selected solvent.

All the final compounds FM0, FM1, FM2, and FM3 were prepared into 1 mM DMSO stock solution for test. And Fluorescence quantum yields of each compound were measured in various solvents including deionized water, PBS buffer (0.01 M, pH = 7.4), Tris-HCl buffer (0.1 M, pH = 7.4), analytically pure ethanol, acetonitrile, tetrahydrofuran (Table S3). Fluorescence testing slit: 5/2.5 nm

Fig. S7. Absorption (a, c, e) and emission (b, d, f) changes of **FM1**, **FM2**, **FM3** (5 μ M) as a function of pH values ranging from 2 to 12 in Water (0.5% DMSO). Excitation wavelength: 470 nm, slit: 5/2.5 nm.

compounds	Calcord	$\lambda^{max}{}_{abs}$	$\lambda^{max}_{em}{}^{c}$	Δλ	3	ъd	Brightness ^e
	Solvent	(nm)	(nm)	(nm)	$(\times 10^4 \text{M}^{-1} \text{cm}^{-1})$	Φ_{n}	$(\times 10^4 \text{M}^{-1} \text{cm}^{-1})$
FM0 ^b	CH ₃ CN	433	520	87	1.47	0.82	1.21
	EtOH	442	530	88	1.50	0.86	1.29
	THF	429	501	72	1.42	0.86	1.22
	water	455	542	87	1.11	0.082	0.09
	PBS	456	542	86	1.07	0.083	0.09
	Tris-HCl	460	548	88	1.12	0.073	0.08
	CH ₃ CN	442	500	58	1.99	0.86	1.71
	EtOH	450	502	52	1.94	0.97	1.88
EM1	THF	437	488	51	1.98	0.93	1.84
F IVI I	water	469	525	56	2.44	0.62	1.51
	PBS	467	525	58	2.18	0.58	1.26
	Tris-HCl	469	525	56	2.27	0.59	1.34
	CH ₃ CN	443	501	58	1.90	0.85	1.62
	EtOH	450	505	55	1.68	0.92	1.55
EM3	THF	440	491	51	1.74	0.91	1.58
F IVI Z	water	467	527	60	2.05	0.66	1.35
	PBS	468	525	57	2.00	0.64	1.28
	Tris-HCl	468	525	57	2.36	0.65	1.53
	CH ₃ CN	441	498	57	1.79	0.92	1.65
	EtOH	453	502	49	1.98	0.99	1.96
EM2	THF	437	486	49	1.78	0.96	1.71
F IVIJ	water	469	526	57	2.18	0.60	1.31
	PBS	467	528	61	2.11	0.62	1.31
	Tris-HCl	469	525	56	2.06	0.60	1.24

Table S3. Absorption and emission properties of FM0, FM1, FM2, and FM3 in selected solvents.^a

^a Stokes shifts, $\Delta\lambda$; molar extinction coefficient at longest wavelength transition, ϵ ; fluorescence quantum yields, Φ .

^b Control compound: N-butyl-4-butylamine-1,8-naphthalimide, usually used as reference ($\Phi_s = 0.81$ in alcohol).

^c Excited at maximum absorption wavelength.

^d Determined relative to fluorescein (Φ_f = 0.79 in 0.1 M sodium hydroxide aqueous solution).

 e Brightness was the product of the molar extinction coefficient at λ^{max}_{abs} and the corresponding fluorescence quantum yield.

4.4 Photostability ⁵

The photostability of FM0, FM1, FM2, and FM3, fluorescein and BODIPY were measured under irradiation of a 150 W Incandescent Lamp for 200 min. FM0: 10% DMSO (v/v) in water, exited at 455 nm, slit: 5/5 nm; FM1, FM2, and FM3: 0.5% DMSO (v/v) in water, exited at 470 nm, slit: 5/2.5 nm; fluorescein: 0.1M sodium hydroxide solution, exited at 480 nm, slit: 5/2.5 nm; BODIPY: 10% DMSO (v/v) in water, excited at 480 nm, slit: 5/2.5 nm. These six samples were 10 cm from the light source, between which was placed a transparent capacity full of saturated potassium nitrate solution. Therein, saturated salt solution was utilized to avoid influence from strong heat of lamp.

Fig. S8. Photobleaching curves for **FM0** (dark yellow), **FM1** (black), **FM2** (pink), **FM3** (red), Fluorescein (blue), BODIPY (cyan). The plot was obtained by using a 150 W Incandescent Lamp in water (10% DMSO, v/v) for **FM0** and BODIPY, water (0.5% DMSO, v/v) for **FM1**, **FM2**, and **FM3**, 0.1 M sodium hydroxide solution for fluorescein. BODIPY: 10- (4-carboxyphenyl) -5,5-difluoro-1,3,7,9-tetramethyl-5H-dipyrrolo [1,2-c:2',1'-f][1,3,2]diazaborinin-4-ium-5-uide.

5. Cell imaging

5.1 Two-photon action cross section

TPA spectra were measured through a femtosecond two-photon-excited fluorescence (TPEF) technique⁶.

Fig. S9. Two-photon action $(\delta \cdot \phi)$ spectra of compounds FM1, FM2, and FM3 in EtOH.

5.2 General methods

MCF-7 (human breast carcinoma) cells were obtained from Institute of Basic Medical Sciences (IBMS) of Chinese Academy of Medical Sciences (CAMS). Fluorescent imaging was acquired on an Olympus FV1000 confocal microscope.

5.3 Fluorescence imaging

The cells were cultured in Dulbecoo's modified Eagle's medium (DMEM) medium supplemented with 10% FBS (fetal bovine serum) and Penicillin-Streptomycin at 37°C in 95% air with 5% CO₂. Cells cultured in glass bottom dishes for 24 h and stained with FM0 (2 µM, 20 min), FM1 (1 μ M, 10 min), FM2 (2 μ M, 20 min) or FM3 (2 μ M, 20 min). And then cells were washed with PBS for three times. FM3 stained cells were incubated for more 20 min.

	ce	ll imaging exper	riment		
compound	laser ir	itensities	gain settings		
	OPM	TPM	OPM	TPM	
FM0	2%	9%	600 V	700 V	
FM1	5%	12%	600 V	700 V	
FM2	30%	36%	700 V	700 V	
FM3	16%	20%	650 V	680 V	

Table S4. The laser intensities and gain settings of compounds FM0, FM1, FM2 and FM3 in

5.4 MTT assay

MCF-7 cells in exponential phase of growth were used to assess the cytotoxic effect of FM1, FM2, and FM3. 3×10^3 cells/well (100 µL) were seeded into 96-well plates and allowed to grow for 24 h prior to treatment with FM1, FM2, and FM3. FM1, FM2, and FM3 at different concentrations (0, 1, 2, 10, 20 µM, dispersed in 100 µL medium) were added into wells (final concentration 0, 0.5, 1, 5, 10 µM) and incubated for 24 h. MTT is added (final concentration 0.5 mg/mL) and incubate for more 4 h. The medium was removed and 200 µL DMSO was added to dissolve the formazan crystals. Optical densities were measured at 490 nm by a Thermo Scientific Multiskan FC spectrophotometer.

Fig. S10. Cell viability of compounds FM1, FM2, and FM3 at different concentrations for 24 h.

6. NMR and HRMS spectra

Fig. S12. ¹³C NMR spectrum of FM1 (DMSO-*d*₆, 100 MHz)

Fig. S14. ¹³C NMR spectrum of FM2 (CDCl₃-CD₃OD, 100 MHz)

Fig. S16. ¹³C NMR spectrum of FM3 (DMSO-*d*₆, 100 MHz)

Minimum: Maximum:		300.0	50.0	-1.5 100.0								
Мазз	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT	(Norm)	Form	ula			
387.1547	387.1556	-0.9	-2.3	10.5	24.2	0.0		C20	H23	N2	06	

Fig. S19. ESI HRMS spectrum of FM3

7. References

- S1 Z. Xu, X. Qian and J. Cui, Org. Lett., 2005, 7, 3029-3032.
- S2 S. Zhang, M. Zhao, W. Zhu, Y. Xu and X. Qian, Dalton Trans., 2015, 44, 9740-9743.
- S3 J. Q. Umberger and V. K. LaMer, J. Am. Chem. Soc., 1945, 67, 1099-1109.
- S4 A. T. R. Williams, S. A. Winfield and J. N. Miller, *Analyst*, **1983**, 108, 1067-1071.
- S5 J. Gao, P. Wang and R. W. Giese, Anal. Chem., 2002, 74, 6397-6401.
- S6 C. Xu and W. W. Webb, J. Opt. Soc. Am. B, 1996, 13, 481-491.