Electronic supporting information

Hollow Li_{1.2}Mn_{0.54}Ni_{0.13}Co_{0.13}O₂ micro-spheres synthesized by a co-precipitation method as high-performance cathode material for Li-ion batteries

Yanxiu Li,^{a, b} Jun Mei,^b Xiaodong Guo,^a Benhe Zhong,*^a Hao Liu,^b Guobiao Liu,*^a

Shixue Dou^c

a School of Chemical Engineering, Sichuan University, Chengdu 610065, China

b Chengdu Green Energy and Green Manufacturing Technology R&D Center, Chengdu

Development Center of Science and Technology, China Academy of Engineering Physics,

Chengdu 610207, China

c Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW 2522, Australia

*Corresponding author: Benhe Zhong	E-mail address: zhongbenhe@163.com		
Guobiao Liu	E-mail address: guobiaoliu@sina.com		

Supporting Figure and Tables

The presence and homogenous distribution of Ni, Co, and Mn elements inside the hollow micro-spheres was identified by EDX chemical mapping of a halved sphere. The corresponding images are shown in Fig. S1.

Fig. S1 SEM/EDX electron image (a) and element mapping images of Mn (b), Ni (c),

Co (d) in a h-LMNC particle.

Table S1 Element molar ratios of s-LNCM and h-LNCM obtained from ICP analysis.

Samples	Element	Li	Mn	Ni	Со
s-LNCM	Content (ppm)	5.365	19.398	4.835	4.911
	Molar ratio	1.197	0.541	0.128	0.130
h-LNCM	Content (ppm)	5.892	21.268	5.343	5.426
	Molar ratio	1.199	0.541	0.129	0.131

Table S2 Specific surface area, pore volume and average pore diameter of s-LNCM

Sample	Specific surface area	Pore volume	Average pore diameter	
	$(m^2 g^{-1})$	$(cm^3 g^{-1})$	(nm)	
s-LNCM	1.127	0.0266	9.429	
h-LNCM	1.631	0.0249	6.105	

 Table S3 Specific surface area, pore volume and average pore diameter of s-LNCM

Sample	Specific surface area	Pore Volume	Average pore diameter	
	$(m^2 g^{-1})$	$(cm^3 g^{-1})$	(µm)	
s-LNCM	0.7851	0.0594	0.3027	
h-LNCM	1.3603	0.4700	1.3820	

and h-LNCM obtained by mercury intrusion method.

Table S4 The values of R_{e} , R_{SEI} and R_{ct} of h-LMNC and s-LMNC after initial cycle

and 100 cycles.

Samples	$R_{\rm e}(\Omega)$		$R_{SEI}(\Omega)$		$R_{ct}\left(\Omega\right)$	
	1 st	100 th	1 st	100 th	1 st	100 th
h-LMNC	2.381	3.433	15.61	81.02	54.73	339.6
s-LMNC	2.453	3.284	21.52	134.5	85.49	832.2