Electronic supporting information

Hollow $\mathrm{Li}_{1.2} \mathbf{M n}_{0.54} \mathrm{Ni}_{0.13} \mathbf{C o}_{0.13} \mathrm{O}_{\mathbf{2}}$ micro-spheres synthesized by a co-precipitation method as high-performance cathode material for Li-ion batteries

 Shixue Dou ${ }^{\text {c }}$
a School of Chemical Engineering, Sichuan University, Chengdu 610065, China
b Chengdu Green Energy and Green Manufacturing Technology R\&D Center, Chengdu
Development Center of Science and Technology, China Academy of Engineering Physics, Chengdu 610207, China
c Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW 2522, Australia

*Corresponding author: Benhe Zhong
E-mail address: zhongbenhe@163.com

Guobiao Liu E-mail address: guobiaoliu@sina.com

Supporting Figure and Tables

The presence and homogenous distribution of Ni, Co, and Mn elements inside the hollow micro-spheres was identified by EDX chemical mapping of a halved sphere. The corresponding images are shown in Fig. S1.

Fig. S1 SEM/EDX electron image (a) and element mapping images of Mn (b), Ni (c),
Co (d) in a h-LMNC particle.

Table S1 Element molar ratios of s-LNCM and h-LNCM obtained from ICP analysis.

Samples	Element	Li	Mn	Ni	Co
s-LNCM	Content (ppm)	5.365	19.398	4.835	4.911
	Molar ratio	1.197	0.541	0.128	0.130
h-LNCM	Content (ppm)	5.892	21.268	5.343	5.426
	Molar ratio	1.199	0.541	0.129	0.131

Table S2 Specific surface area, pore volume and average pore diameter of s-LNCM and h -LNCM obtained by nitrogen absorption method.

Sample	Specific surface area $\left(\mathrm{m}^{2} \mathrm{~g}^{-1}\right)$	Pore volume $\left(\mathrm{cm}^{3} \mathrm{~g}^{-1}\right)$	Average pore diameter (nm)
s-LNCM	1.127	0.0266	9.429
h-LNCM	1.631	0.0249	6.105

Table S3 Specific surface area, pore volume and average pore diameter of s-LNCM and h-LNCM obtained by mercury intrusion method.

Sample	Specific surface area $\left(\mathrm{m}^{2} \mathrm{~g}^{-1}\right)$	Pore Volume $\left(\mathrm{cm}^{3} \mathrm{~g}^{-1}\right)$	Average pore diameter $(\mu \mathrm{m})$
s-LNCM	0.7851	0.0594	0.3027
h-LNCM	1.3603	0.4700	1.3820

Table S4 The values of $R_{\mathrm{e}}, R_{\text {SEI }}$ and R_{ct} of h-LMNC and s-LMNC after initial cycle and 100 cycles.

Samples	$R_{\mathrm{e}}(\Omega)$		$R_{S E I}(\Omega)$		$R_{c t}(\Omega)$	
	$1^{\text {st }}$	$100^{\text {th }}$	$1^{\text {st }}$	$100^{\text {th }}$	$1^{\text {st }}$	$100^{\text {th }}$
h-LMNC	2.381	3.433	15.61	81.02	54.73	339.6
s-LMNC	2.453	3.284	21.52	134.5	85.49	832.2

