Supplementary Information

Direct access to stabilized Cu^I using cuttlebone as a natural-

reducing support for efficient CuAAC click reactions in water

Sara S. E. Ghodsinia, Batool Akhlaghinia*, Roya Jahanshahi

Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.

Experimental

General

The purity determinations of the products and the progress of the reactions were accomplished by TLC on silica gel polygram STL G/UV 254 plates. The melting points of the products were determined with an Electrothermal Type 9100 melting point apparatus. The FT-IR spectra were recorded on pressed KBr pellets using an AVATAR 370 FT-IR spectrometer (Therma Nicolet spectrometer, USA) at room temperature in the range between 4000 and 400 cm⁻¹ with a resolution of 4 cm⁻¹, and each spectrum was the average of 32 scans. NMR spectra were recorded on a NMR Bruker Avance spectrometer at 400 and 300 MHz in CDCl₃ as solvent in the presence of tetramethylsilane as the internal standard and the coupling constants (J values) are given in Hz. Elemental analyses were performed using a Thermo Finnigan Flash EA 1112 Series instrument (furnace: 900 °C, oven: 65 °C, flow carrier: 140 mL min⁻¹, flow reference: 100 mL min⁻¹). Mass spectra were recorded with a CH7A Varianmat Bremem instrument at 70 eV electron impact ionization, in m/z (rel %). Elemental compositions were determined with an SC7620 Energydispersive X-ray analysis (EDX) presenting a 133 eV resolution at 20 kV. Surface analysis spectroscopy of the catalyst was performed in an ESCA/AES system. This system was equipped with a concentric hemispherical (CHA) electron energy analyzer (Specs model EA10 plus) suitable for X-ray photoelectron spectroscopy (XPS). Inductively coupled plasma (ICP) was carried out on a Varian, VISTA-PRO, CCD, Australia and 76004555 SPECTRO ARCOS ICP-OES analyzer. All yields refer to isolated products after purification by recrystallization.

1-Benzyl-4-phenyl-1*H***-1,2,3-triazole (Table 3, Entry 1)** (0.22 g, 95%); white solid (crystals); mp 127-128 °C (from EtOH) (Lit.¹ 128–129 °C); FT-IR (KBr): v_{max} /cm⁻¹ 3133, 3051, 2949, 1611, 1461 (CH₂), 1443, 1427, 1352, 1222 (N–N=N–), 1188 (C–N), 1072, 1049, 972, 914, 816 (=C–H oop, triazole ring), 767, 720, 696, 581; ¹H NMR: δ H (300 MHz; CDCl₃; Me₄Si) 7.83 (2 H, d, *J* = 7.65 Hz, Ar-H), 7.70 (1 H, s, C=CH), 7.44-7.38 (5 H, m, Ar-H), 7.36-7.29 (3 H, m, Ar-H), 5.58 (2 H, s, CH₂); ¹³C NMR: δ C (75 MHz; CDCl₃; Me₄Si) 148, 134, 130, 129, 128.83, 128.79, 128.18, 128.07, 125, 119, 54; MS, *m*/*z* 235 (M⁺, 13%), 234 (75, M – H), 206 (55, M – N₂), 129 (63, M – C₇H₇N), 116 (95, M – C₈H₇N₂), 104 (75, M – C₈H₆N₂), 91 (100, M – C₈H₆N₃), 77 (74, M – C₉H₈N₃), 29 (50, M – C₁₅H₁₃N).

Figure 1: FT-IR (KBr) of 1-Benzyl-4-phenyl-1*H*-1,2,3-triazole (Table 3, Entry 1).

Figure 2: ¹H NMR (300 MHz, CDCl₃) of 1-Benzyl-4-phenyl-1*H*-1,2,3-triazole (Table 3, Entry 1).

Figure 3: ¹³C NMR (75MHz, CDCl₃) of 1-Benzyl-4-phenyl-1*H*-1,2,3-triazole (Table 3, Entry 1).

Figure 4: Mass spectrum of 1-Benzyl-4-phenyl-1*H*-1,2,3-triazole (**Table 3**, **Entry 1**). **1-Benzyl-4-**(*p*-tolyl)-1*H*-1,2,3-triazole (**Table 3**, **Entry 2**) (0.23 g, 93%); white solid (crystals); mp 142-144 °C (from EtOH) (Lit.² 142–146 °C); FT-IR (KBr): v_{max}/cm^{-1} 3145, 3015, 2913, 1495, 1456 (CH₂), 1431, 1347, 1222 (N–N=N–), 1180 (C–N), 1065, 1046, 976, 827 (=C–H oop, triazole ring), 793, 721, 583, 512; ¹H NMR: δH (300 MHz; CDCl₃; Me₄Si) 7.71 (2 H, d, *J* = 8.1 Hz, Ar-H), 7.65 (1 H, s, C=CH), 7.43-7.29 (5 H, m, Ar-H), 7.23 (2 H, d, *J* = 7.8 Hz, Ar-H), 5.59 (2 H, s, CH₂), 2.39 (3 H, s, CH₃); MS, *m/z* 249 (M⁺, 3%), 248 (32, M – H), 247 (86, M – 2 H), 220 (70, M – N₂), 130 (99, M – C₈H₈N), 115 (55, M – C₇H₇N₃), 103 (86, M – C₉H₁₀N₂), 91 (100, M – C₉H₈N₃), 77 (86, M – C₁₀H₁₀N₃), 28 (85, M – C₁₆H₁₅N).

Figure 5: FT-IR (KBr) of 1-Benzyl-4-(p-tolyl)-1H-1,2,3-triazole (Table 3, Entry 2).

Figure 6: ¹H NMR (300 MHz, CDCl₃) of 1-Benzyl-4-(*p*-tolyl)-1*H*-1,2,3-triazole (Table 3, Entry 2).

Figure 7: Mass spectrum of 1-Benzyl-4-(*p*-tolyl)-1*H*-1,2,3-triazole (**Table 3**, **Entry 2**). **1-Benzyl-4-(4-methoxyphenyl)-1***H***-1,2,3-triazole (Table 3**, **Entry 3**) (0.22 g, 85%); white solid (crystals); mp 139–141 °C (from EtOH) (Lit.³ 140–142 °C); FT-IR (KBr): v_{max} /cm⁻¹ 3137, 3035, 2966, 2952, 2855, 2835, 1617, 1580, 1556, 1500, 1455 (CH₂), 1352, 1266 (N–N=N–), 1250, 1221, 1172 (C–N), 1074, 1027, 980, 834 (=C–H oop, triazole ring), 796, 720, 579; ¹H NMR: δH (300 MHz; CDCl₃; Me₄Si) 7.78-7.29 (8 H, m, Ar-H, C=CH), 6.96 (2 H, d, *J* = 7.2 Hz, Ar-H), 5.58 (2 H, s, CH₂), 3.85 (3 H, s, OCH₃); ¹³C NMR: δC (75 MHz; CDCl₃; Me₄Si) 159, 148, 134, 129, 128.76, 128.08, 126, 123, 114, 55, 54; MS, *m*/*z* 265 (M⁺, 6%), 263 (78, M – 2 H), 262 (98, M – 3 H), 234 (58, M – CH₃O), 145 (99, M – C₇H₇N₂), 91 (100, M – C₉H₈N₃O), 28 (98, M – C₁₆H₁₅NO).

Figure 8: FT-IR (KBr) of 1-Benzyl-4-(4-methoxyphenyl)-1*H*-1,2,3-triazole (Table 3, Entry 3).

Figure 9: ¹H NMR (300 MHz, CDCl₃) of 1-Benzyl-4-(4-methoxyphenyl)-1*H*-1,2,3triazole (Table 3, Entry 3).

Figure 10: ¹³C NMR (75MHz, CDCl₃) of 1-Benzyl-4-(4-methoxyphenyl)-1*H*-1,2,3-triazole (Table 3, Entry 3).

Figure 11: Mass spectrum of 1-Benzyl-4-(4-methoxyphenyl)-1*H*-1,2,3-triazole (Table 3, Entry 3).

1-benzyl-4-(4-(*tert***-butyl)phenyl)-1***H***-1,2,3-triazole (Table 3, Entry 4)** (0.26 g, 90%); white solid (crystals); mp 112–113 °C (from EtOH) (Lit.⁴ 112–114 °C); FT-IR (KBr): v_{max}/cm^{-1} 3084, 3035, 2959, 2865, 1495, 1457 (CH₂), 1363, 1221 (N–N=N–), 1189 (C–N), 1071, 1048, 976, 832 (=C–H oop, triazole ring), 739, 719, 693, 559; ¹H NMR: δ H (400 MHz; CDCl₃; Me₄Si) 7.73 (2 H, d, *J* = 8 Hz, Ar-H), 7.63 (1 H, s, C=CH), 7.43-7.21 (7 H, m, Ar-H,), 5.58 (2 H, s, CH₂), 1.37 (9 H, s, 3 CH₃); MS, *m/z* 291 (M⁺, 4%), 290 (27, M – H), 289 (88, M – 2 H), 171 (99, M – C₇H₇N₂), 157 (43, M – C₇H₇N₃), 91 (100, M – C₁₂H₁₄N₃), 57 (45, M – C₁₅H₁₂N₃), 29 (96, M – C₁₉H₂₁N).

Figure 12: FT-IR (KBr) of 1-benzyl-4-(4-(*tert*-butyl)phenyl)-1*H*-1,2,3-triazole (Table 3, Entry 4).

Figure 13: ¹H NMR (400 MHz, CDCl₃) of 1-benzyl-4-(4-(*tert*-butyl)phenyl)-1*H*-1,2,3-triazole (Table 3, Entry 4).

Figure 14: Mass spectrum of 1-benzyl-4-(4-(*tert*-butyl)phenyl)-1*H*-1,2,3-triazole (Table 3, Entry 4).

2-(1-benzyl-1*H***-1,2,3-triazol-4-yl)pyridine (Table 3, Entry 5)** (0.19 g, 82%); white solid (crystals); mp 112–113 °C (from EtOH) (Lit.⁵ 113–114 °C); FT-IR (KBr): v_{max} /cm⁻¹ 3137, 3105, 3084, 3002, 2949, 1599, 1568, 1455 (CH₂), 1419, 1352, 1223 (N–N=N–), 1196 (C–N), 1082, 1044, 996, 857 (=C–H oop, triazole ring), 786, 727, 711, 579; ¹H NMR: δ H (300 MHz; CDCl₃; Me₄Si) 8.55 (1 H, d, *J* = 4.2 Hz, Py-H), 8.19 (1 H, d, *J* = 8.1 Hz, Py-H), 8.06 (1 H, s, C=CH), 7.78 (1 H, td, *J*₁ = 7.8 Hz, *J*₂ = 1.8 Hz, Py-H), 7.41-7.33 (5 H, m, Ar-H, Py-H), 7.24-7.20 (1 H, m, Ar-H), 5.60 (2 H, s, CH₂); ¹³C NMR: δ C (75 MHz; CDCl₃; Me₄Si) 150, 149, 148, 136, 134, 129, 128.86, 128.33, 122, 121, 120, 54.MS, *m*/z 236 (M⁺, 5%), 235 (41, M – H), 234 (82, M – 2 H), 207 (95, M – N₂), 78 (35, M – C₉H₈N₃), 91 (92, M – C₇H₅N₄).

Figure 15: FT-IR (KBr) of 2-(1-benzyl-1H-1,2,3-triazol-4-yl)pyridine (Table 3, Entry 5

Figure 16: ¹H NMR (300 MHz, CDCl₃) of 2-(1-benzyl-1*H*-1,2,3-triazol-4-yl)pyridine (Table 3, Entry 5).

Figure 17: ¹³C NMR (75MHz, CDCl₃) of 2-(1-benzyl-1*H*-1,2,3-triazol-4-yl)pyridine (Table 3, Entry 5).

Figure 18: Mass spectrum of 2-(1-benzyl-1*H*-1,2,3-triazol-4-yl)pyridine (Table 3, Entry 5).

1-benzyl-4-(4-chlorophenyl)-1*H***-1,2,3-triazole (Table 3, Entry 6)** (0.24 g, 90%); white solid (crystals); mp 125–126 °C (from EtOH) (Lit.⁶ 125–127 °C); ¹H NMR: δ H (300 MHz; CDCl₃; Me₄Si) 7.74 (2 H, d, *J* = 8.4 Hz, Ar-H), 7.69 (1 H, s, C=CH), 7.40-7.29 (7 H, m, Ar-H), 5.57 (2 H, s, CH₂); ¹³C NMR: δ C (75 MHz; CDCl₃; Me₄Si) 147, 134, 133, 129.21, 129.11, 129.01, 128.87, 128.11, 126, 119, 54; MS, *m*/*z* 269 (M⁺, 8%), 271 (2, M + 2), 268 (60, M – H), 267 (65, M – 2 H), 241 (32, M – N₂), 178 (65, M – C₇H₇), 149 (94, M – C₇H₇N₂), 123 (69, M – C₈H₈N₃), 104 (65, M – C₈H₅ClN₂), 91 (100, M – C₈H₅ClN₃), 28 (62, M – C₁₅H₁₂ClN).

Figure 19: ¹H NMR (300 MHz, CDCl₃) of 1-(4-chlorobenzyl)-4-phenyl-1*H*-1,2,3-triazole (Table 3, Entry 6).

Figure 20: ¹³C NMR (75MHz, CDCl₃) of 1-benzyl-4-(4-chlorophenyl)-1*H*-1,2,3-triazole (Table 3, Entry 6).

Figure 21: Mass spectrum of 1-benzyl-4-(4-chlorophenyl)-1*H*-1,2,3-triazole (Table 3, Entry 6).

1-benzyl-4-(4-bromophenyl)-1*H***-1,2,3-triazole (Table 3, Entry 7)** (0.27 g, 87%); white solid (crystals); mp 144 °C (from EtOH) (Lit.⁶ 143–145 °C); ¹H NMR: δ H (300 MHz; CDCl₃; Me₄Si) 7.69 (2 H, d, *J* = 1.8 Hz, Ar-H), 7.67 (1 H, s, C=CH), 7.53 (2 H, d, *J* = 6.9 Hz, Ar-H), 7.29-7.43 (5 H, m, Ar-H), 5.58 (2 H, s, CH₂); ¹³C NMR: δ C (75 MHz; CDCl₃; Me₄Si) 147, 134, 131, 129.54, 129.22, 128.89, 128.12, 127, 122, 119, 54; MS, *m*/*z* 314 (M⁺, 7%), 316 (6, M + 2), 313 (56, M – H), 312 (72, M – 2 H), 285 (13, M – N₂), 194 (88, M – C₈H₈N), 104 (82, M – C₈H₅BrN₂), 91 (100, M – C₈H₅BrN₃), 28 (24, M – C₁₅H₁₂BrN).

Figure 22: ¹H NMR (300 MHz, CDCl₃) of 1-benzyl-4-(4-bromophenyl)-1*H*-1,2,3-triazole (Table 3, Entry 7).

Figure 23: ¹³C NMR (75MHz, CDCl₃) of 1-benzyl-4-(4-bromophenyl)-1*H*-1,2,3-triazole (Table 3, Entry 7).

Figure 24: Mass spectrum of 1-benzyl-4-(4-bromophenyl)-1*H*-1,2,3-triazole (Table 3, Entry 7).

1-benzyl-4-(4-nitrophenyl)-1*H***-1,2,3-triazole (Table 3, Entry 8)** (0.27 g, 95%); yellow solid (crystals); mp 167–168 °C (from EtOH) (Lit.⁷ 168–170 °C); ¹H NMR: δH (300 MHz; CDCl₃; Me₄Si) 8.27 (2 H, d, *J* = 8.7 Hz, Ar-H), 7.99 (2 H, d, *J* = 8.7 Hz, Ar-H), 7.85 (1 H, s, C=CH), 7.29-7.44 (5 H, m, Ar-H), 5.63 (2 H, s, CH₂); ¹³C NMR: δC (75 MHz; CDCl₃; Me₄Si) 147, 146, 136, 134, 129.33, 129.09, 128, 126, 124, 121, 54; MS, *m/z* 280 (M⁺, 5%), 279 (57, M – H), 278 (68, M – 2 H), 252 (8, M – N₂), 233 (24, M – NO₂), 148 (37, M – C₈H₈N₂), 105 (39, M – C₈H₅N₃O₂), 91 (100, M – C₈H₅N₄O₂), 28 (58, M – C₁₅H₁₂N₂O₂).

Figure 25: ¹H NMR (300 MHz, CDCl₃) of 1-benzyl-4-(4-nitrophenyl)-1*H*-1,2,3-triazole (Table 3, Entry 8).

Figure 26: ¹³C NMR (75MHz, CDCl₃) of 1-benzyl-4-(4-nitrophenyl)-1*H*-1,2,3-triazole (Table 3, Entry 8).

Figure 27: Mass spectrum of 1-benzyl-4-(4-nitrophenyl)-1*H*-1,2,3-triazole (Table 3, Entry 8).

(1-benzyl-1*H*-1,2,3-triazol-4-yl)methanol (Table 3, Entry 9) (0.14 g, 73%); white solid (crystals); mp 77-78 °C (from EtOH) (Lit.⁸ 77 - 79 °C); ¹H NMR: δH (300 MHz; CDCl₃; Me₄Si) 7.48 (1 H, s, C=CH), 7.36–7.34 (3 H, m, Ar-H), 7.29–7.24 (2 H, m, Ar-H), 5.48 (2 H, s, CH₂), 4.72 (2 H, s, CH₂OH), 4.19 (1 H, br s, OH); ¹³C NMR: δC (75 MHz; CDCl₃; Me₄Si) 148, 134, 129, 128.7, 128.1, 121, 56, 54; MS, *m/z* 189 (M⁺, 9%), 188 (64, M-1H), 187 (64, M – 2H), 159 (63, M – CH₃O), 129 (65), 91 (100, M – C₃H₄N₃O), 77 (55, M – C₄H₆N₃O), 65 (71), 28 (64, M – C₁₀H₁₁NO).

Figure 28: ¹H NMR (300 MHz, CDCl₃) of (1-benzyl-1*H*-1,2,3-triazol-4-yl)methanol (Table 3, Entry 9).

Figure 29: ¹³C NMR (300 MHz, CDCl₃) of (1-benzyl-1*H*-1,2,3-triazol-4-yl)methanol (Table 3, Entry 9).

Figure 30: Mass spectrum of 1-benzyl-1*H*-1,2,3-triazol-4-yl)methanol (Table 3, Entry 9).

1-benzyl-4-pentyl-1*H***-1,2,3-triazole (Table 3, Entry 10)** (0.18 g, 77%); yellow-green solid (crystals); mp 41-42 °C (from EtOH) (Lit.⁹ 42–43 °C); ¹H NMR: δ H (300 MHz; CDCl₃; Me₄Si) 7.29-7.26 (3 H, m, C=CH , Ar-H), 7.21–7.17 (3 H, m, Ar-H), 5.41 (2 H, s, CH₂), 2.62 (2 H, t, *J* = 7.8 Hz, CH₂Bt), 1.6 (2 H, qn, *J* = 7.2 Hz, CH₂CH₂Pr), 1.29-1.22 (4 H, m, Et CH₂CH₂CH₃), 0.83 (3 H, t, *J* = 6.9 Hz, CH₃); ¹³C NMR: δ C (75 MHz; CDCl₃; Me₄Si) 148, 135, 129, 128, 127, 120, 54, 31, 29, 25, 22, 14; MS, *m*/*z* 229 (M⁺, 4%), 227 (70, M – 2H), 172 (68, M – C₄H₉), 91 (99, M – C₇H₁₂N₃), 83 (70), 57 (70, M – C₁₀H₁₀N₃), 43 (67, M – C₁₁H₁₂N₃), 29 (47, M – C₁₂H₁₄N₃), 28 (75, M – C₁₄H₁₉N).

Figure 31: ¹H NMR (300 MHz, CDCl₃) of 1-benzyl-4-pentyl-1*H*-1,2,3-triazole (Table 3, Entry 10).

Figure 32: ¹³C NMR (300 MHz, CDCl₃) of 1-benzyl-4-pentyl-1*H*-1,2,3-triazole (Table 3, Entry 10).

Figure 33: Mass spectrum of 1-benzyl-4-pentyl-1*H*-1,2,3-triazole (Table 3, Entry 10).

1-(4-chlorobenzyl)-4-phenyl-1*H***-1,2,3-triazole (Table 3, Entry 11)** (0.26 g, 95%); white solid (crystals); mp 140–143 °C (from EtOH) (Lit.² 142–145 °C); FT-IR (KBr): v_{max}/cm^{-1} 3113, 3083, 3064, 3035, 2933, 1491, 1462 (CH₂), 1411, 1356, 1220 (N–N=N–), 1139 (C–N), 1093, 1080, 1015, 972, 821 (=C–H oop, triazole ring), 805, 764, 688, 497; ¹H NMR: δ H (300 MHz; CDCl₃; Me₄Si) 7.83 (2 H, d, *J* = 7.6 Hz, Ar-H), 7.69 (1 H, s, C=CH), 7.46–7.32 (5 H, m, Ar-H), 7.27 (2 H, d, *J* = 8.7 Hz, Ar-H), 5.58 (2 H, s, CH₂); MS, *m/z* 269 (M⁺, 7%), 271 (2, M + 2), 268 (33, M – H), 266 (75, M – 3 H), 125 (80, M – C₈H₆N₃), 116 (92, M – C₇H₆ClN₂), 102 (66, M – C₇H₆ClN₃), 89 (87), 77 (65, M – C₉H₇ClN₃), 39 (75), 28 (62, M – C₁₅H₁₂ClN).

Figure 34: FT-IR (KBr) of 1-(4-chlorobenzyl)-4-phenyl-1H-1,2,3-triazole (Table 3, Entry

11).

Figure 35: ¹H NMR (300 MHz, CDCl₃) of 1-(4-chlorobenzyl)-4-phenyl-1*H*-1,2,3-triazole (Table 3, Entry 11).

Figure 36: Mass spectrum of 1-(4-chlorobenzyl)-4-phenyl-1*H*-1,2,3-triazole (Table 3, Entry 11).

1-(4-chlorobenzyl)-4-(*p***-tolyl)-1***H***-1,2,3-triazole (Table 3, Entry 12)** (0.26 g, 91%); white solid (crystals); mp 141–142 °C (from EtOH) (Lit.² 140–143 °C); FT-IR (KBr): v_{max} /cm⁻¹ 3117, 3090, 3047, 2921, 1492, 1454 (CH₂), 1410, 1356, 1220 (N–N=N–), 1170 (C–N), 1081, 1047, 1015, 976, 818 (=C–H oop, triazole ring), 767, 517; ¹H NMR: δ H (300 MHz; CDCl₃; Me₄Si) 7.71 (2 H, d, *J* = 8.1 Hz, Ar-H), 7.65 (1 H, s, C=CH), 7.39 (2 H, d, *J* = 8.4 Hz, Ar-H), 7.29-7.23 (4 H, m, Ar-H), 5.56 (2 H, s, CH₂), 2.39 (3 H, s, CH₃); MS, *m*/*z* 283 (M⁺, 25%), 285 (8, M + 2), 282 (40, M – H), 281 (85, M – 2 H), 125 (85, M – C₉H₈N₃), 116 (60, M – C₇H₆ClN₃), 89 (85), 77 (85, M – (C₉H₇ClN₃ + CH₃)), 28 (82, M – C₁₆H₁₄ClN), 15 (38, M – C₁₅H₁₁ClN₃).

Figure 37: FT-IR (KBr) of 1-(4-chlorobenzyl)-4-(*p*-tolyl)-1*H*-1,2,3-triazole (Table 3, Entry 12).

Figure 38: ¹H NMR (300 MHz, CDCl₃) of 1-(4-chlorobenzyl)-4-(*p*-tolyl)-1*H*-1,2,3triazole (Table 3, Entry 12).

Figure 39: Mass spectrum of 1-(4-chlorobenzyl)-4-(p-tolyl)-1H-1,2,3-triazole (Table 3, Entry 12).

1-(4-chlorobenzyl)-4-(4-methoxyphenyl)-1*H***-1,2,3-triazole (Table 3, Entry 13) (0.26 g, 87%); white solid (crystals); mp 150-151 °C (from EtOH) (Lit.¹⁰ 150–152 °C); elemental analysis: Found: C, 63.99; H, 4.65; N, 13.92. Calc. for C₁₆H₁₄ClN₃O: C, 64.11; H, 4.71; N, 14.02%; FT-IR (KBr): v_{max}/cm⁻¹ 3121, 3091, 3019, 2958, 2933, 2835, 1616, 1561, 1493, 1453 (CH₂), 1434, 1351, 1302, 1255 (N–N=N–), 1218, 1175 (C–N), 1030, 1016, 976, 818 (=C–H oop, triazole ring), 765; ¹H NMR: δH (300 MHz; CDCl₃; Me₄Si) 7.76–7.28 (7 H, m, Ar-H, C=CH), 6.96 (2 H, d,** *J* **= 6.3 Hz, Ar-H), 5.55 (2 H, s, CH₂), 2.86 (3 H, s, CH₃); ¹³C NMR: δC (75 MHz; CDCl₃; Me₄Si) 159, 148, 134, 133, 129, 127, 123, 118, 114, 55, 53; MS,** *m***/***z* **299 (M⁺, 5%), 301 (2, M + 2), 298 (43, M – H), 297 (95, M – 2 H), 267 (96, M – CH₃O), 146 (42, M – C₇H₆ClN₂), 125 (90, M – C₉H₈N₃O), 89 (95), 76 (91, M – (CH₃O + C₉H₇ClN₃)), 28 (55, M – C₁₆H₁₄ClNO).**

Figure 40: Elemental analysis of 1-(4-chlorobenzyl)-4-(4-methoxyphenyl)-1*H*-1,2,3triazole (Table 3, Entry 13).

Figure 41: FT-IR (KBr) of 1-(4-chlorobenzyl)-4-(4-methoxyphenyl)-1*H*-1,2,3-triazole (Table 3, Entry 13).

Figure 42: ¹H NMR (300 MHz, CDCl₃) of 1-(4-chlorobenzyl)-4-(4-methoxyphenyl)-1*H*-1,2,3-triazole (Table 3, Entry 13).

Figure 43: ¹³C NMR (75MHz, CDCl₃) of 1-(4-chlorobenzyl)-4-(4-methoxyphenyl)-1*H*-1,2,3-triazole (Table 3, Entry 13).

Figure 44: Mass spectrum of 1-(4-chlorobenzyl)-4-(4-methoxyphenyl)-1*H*-1,2,3-triazole (Table 3, Entry 13). **4-(4-(***tert***-butyl)phenyl)-1-(4-chlorobenzyl)-1***H***-1,2,3-triazole (Table 3, Entry 14) (0.29 g, 88%); white solid (crystals); mp 153-154°C (from EtOH) (Lit.¹⁰ 153–154 °C); elemental analysis: Found: C, 69.94; H, 5.93; N, 12.63. Calc. for C_{19}H_{20}CIN_3: C, 70.04; H, 6.19; N, 12.90%; FT-IR (KBr): v_{max}/cm^{-1} 3133, 2959, 2904, 2868, 1492, 1457 (CH₂), 1427, 1361, 1224 (N–N=N–), 1157 (C–N), 1049, 1014, 976, 833 (=C–H oop, triazole ring), 806, 776, 560; ¹H NMR: δH (300 MHz; CDCl₃; Me₄Si) 7.75 (2 H, d,** *J* **= 8.4 Hz, Ar-H), 7.67 (1 H, s, C=CH), 7.45 (2 H, d,** *J* **= 8.4 Hz, Ar-H), 7.37 (2 H, d,** *J* **= 8.4 Hz, Ar-H), 7.26 (2 H, t,** *J* **= 8.4 Hz, Ar-H), 5.55 (2 H, s, CH₂), 1.36 (9 H, s, 3 CH₃); ¹³C NMR: δC (75 MHz; CDCl₃; Me₄Si) 151, 148, 134, 133, 129, 127, 125, 119, 53, 34, 31; MS,** *m***/***z* **325 (M⁺, 64%), 327 (19, M + 2), 324 (65, M – H), 323 (69, M – 2 H), 172 (91, M – C₇H₆CIN₂), 173 (61, M – C₈H₇CIN), 125 (92, M – C₁₂H₁₄N₃), 77 (63, M – (C₁₃H₁₆N₃ + Cl)), 57 (67, M – C₁₅H₁₁CIN₃), 28 (63, M – N₂).**

Figure 45: Elemental analysis of 4-(4-(*tert*-butyl)phenyl)-1-(4-chlorobenzyl)-1*H*-1,2,3triazole (Table 3, Entry 14).

Figure 46: FT-IR (KBr) of 4-(4-(*tert*-butyl)phenyl)-1-(4-chlorobenzyl)-1*H*-1,2,3-triazole (Table 3, Entry 14).

Figure 47: ¹H NMR (300 MHz, CDCl₃) of 4-(4-(*tert*-butyl)phenyl)-1-(4-chlorobenzyl)-1*H*-1,2,3-triazole (Table 3, Entry 14).

Figure 48: ¹³C NMR (75MHz, CDCl₃) of 4-(4-(*tert*-butyl)phenyl)-1-(4-chlorobenzyl)-1*H*-1,2,3-triazole (**Table 3**, **Entry 14**).

Figure 49: Mass spectrum of 4-(4-(*tert*-butyl)phenyl)-1-(4-chlorobenzyl)-1*H*-1,2,3-triazole (Table 3, Entry 14).

2-(1-(4-chlorobenzyl)-1*H***-1,2,3-triazol-4-yl)pyridine (Table 3, Entry 15)** (0.20 g, 74 %); yellow solid (crystals); mp 113–114 °C (from EtOH) (Lit.² 115–117 °C); FT-IR (KBr): v_{max} /cm⁻¹ 3113, 3088, 3060, 2925, 2855, 1595, 1568, 1491, 1469 (CH₂), 1419, 1325, 1224 (N–N=N–), 1147 (C–N), 1080, 1046, 1015, 994, 805 (=C–H oop, triazole ring), 784, 768, 739, 677; ¹H NMR: δ H (300 MHz; CDCl₃; Me₄Si) 8.56 (1 H, d, *J* = 4.2 Hz, Py-H), 8.20 (1 H, d, *J* = 7.8 Hz, Py-H), 8.07 (1 H, s, C=CH), 7.79 (1 H, td, *J*₁= 7.65 Hz, *J*₂ = 1.8 Hz, Py-H), 7.39-7.22 (5 H, m, Ar-H), 5.58 (2 H, s, CH₂); ¹³C NMR: δ C (75 MHz; CDCl₃; Me₄Si) 150, 149, 148, 136, 134, 132, 129.61, 129.41, 122, 121, 120, 53; MS, *m/z* 270 (M⁺, 40%), 272 (13, M + 2), 269 (43, M – H), 268 (55, M – 2 H), 242 (43, M – N₂), 125 (100, M – C₇H₅N₄), 117 (96, M – C₇H₆ClN₂), 99 (75, M – (C₈H₇N₄ + Cl)), 103 (50, M – C₇H₆ClN₃), 90 (88), 78 (75, M – C₉H₇ClN₃), 28 (50, M – C₁₄H₁₁ClN₂).

Figure 50: FT-IR (KBr) of 2-(1-(4-chlorobenzyl)-1*H*-1,2,3-triazol-4-yl)pyridine (Table 3, Entry 15).

Figure 51: ¹H NMR (300 MHz, CDCl₃) of 2-(1-(4-chlorobenzyl)-1*H*-1,2,3-triazol-4yl)pyridine (Table 3, Entry 15).

Figure 52: ¹³C NMR (75MHz, CDCl₃) of 2-(1-(4-chlorobenzyl)-1*H*-1,2,3-triazol-4-yl)pyridine (Table 3, Entry 15).

Figure 53: Mass spectrum of 2-(1-(4-chlorobenzyl)-1*H*-1,2,3-triazol-4-yl)pyridine (Table 3, Entry 15).

1-(4-nitrobenzyl)-4-phenyl-1*H***-1,2,3-triazole (Table 3, Entry 16)** (0.23 g, 85%); white solid (crystals); mp 157–158 °C (from EtOH) (Lit.¹¹ 156–157 °C); FT-IR (KBr): v_{max}/cm^{-1} 3126, 3080, 2962, 2855, 1607, 1517, 1462 (CH₂), 1443, 1348, 1218 (N–N=N–), 1186 (C–N), 1071, 1046, 1016, 972, 861, 806 (=C–H oop, triazole ring), 764, 726, 693, 513; ¹H NMR: δH (300 MHz; CDCl₃; Me₄Si) 8.25 (2 H, d, *J* = 8.7 Hz, Ar-H), 7.84 (2 H, d, *J* = 8.7 Hz, Ar-H), 7.79 (1 H, s, C=CH), 7.48-7.29 (5 H, m, Ar-H), 5.72 (2 H, s, CH₂); MS, *m*/*z* 280 (M⁺, 5%), 279 (21, M – H), 278 (86, M – 2 H), 204 (40, M – C₆H₅), 177 (18, M – C₇H₅N), 135 (41, M – C₈H₆N₃), 116 (100, M – C₇H₆N₃O₂), 78 (85, M – C₉H₇N₄O₂), 29 (72, M – C₁₅H₁₂N₂O₂).

Figure 45: FT-IR (KBr) of 1-(4-nitrobenzyl)-4-phenyl-1*H*-1,2,3-triazole (Table 3, Entry 16).

Figure 55: ¹H NMR (300 MHz, CDCl₃) of 1-(4-nitrobenzyl)-4-phenyl-1*H*-1,2,3-triazole (Table 3, Entry 16).

Figure 56: Mass spectrum of 1-(4-nitrobenzyl)-4-phenyl-1*H*-1,2,3-triazole (Table 3, Entry 16).

1-(4-nitrobenzyl)-4-(*p*-tolyl)-1*H*-1,2,3-triazole (Table 3, Entry 17) (0.24 g, 84%); white solid (crystals); mp 145–146 °C (from EtOH) (Lit.¹² 145–147 °C); FT-IR (KBr): v_{max} /cm⁻¹ 3094, 3051, 2925, 2855, 1603, 1515, 1455 (CH₂), 1429, 1348, 1287, 1222 (N–N=N–), 1110 (C–N), 1043, 980, 845, 818 (=C–H oop, triazole ring), 801, 730, 514; MS, *m*/*z* 294 (M⁺, 5%), 293 (20, M – H), 292 (78, M – 2 H), 249 (43, M – NO₂), 204 (29, M – C₇H₇), 177 (55, M – C₈H₇N), 135 (77, M – C₉H₈N₃), 130 (100, M – C₇H₆N₃O₂), 103 (83, M – C₈H₇N₄O₂), 91 (68, M – C₉H₇N₄O₂), 77 (93, M – (NO₂ + C₁₀H₁₀N₃)), 29 (81, M – C₁₆H₁₄N₂O₂).

Figure 57: FT-IR (KBr) of 1-(4-nitrobenzyl)-4-(p-tolyl)-1H-1,2,3-triazole (Table 3, Entry 17).

Figure 58: Mass spectrum of 1-(4-nitrobenzyl)-4-(*p*-tolyl)-1*H*-1,2,3-triazole (Table 3, Entry 17).

4-(4-methoxyphenyl)-1-(4-nitrobenzyl)-1*H***-1,2,3-triazole (Table 3, Entry 18)** (0.27 g, 89%); white solid (crystals); mp 94–96 °C (from EtOH) (Lit.¹³ 95–98 °C); FT-IR (KBr): v_{max} /cm⁻¹ 3125, 3092, 3002, 2941, 2839, 1611, 1556, 1530, 1502, 1452 (CH₂), 1343, 1248 (N–N=N–), 1222, 1174 (C–N), 1107, 1027, 980, 819 (=C–H oop, triazole ring), 845, 727, 608, 538; ¹H NMR: δ H (300 MHz; CDCl₃; Me₄Si) 8.21 (2 H, d, *J* = 8.4 Hz, Ar-H), 7.84 (1 H, s, C=CH), 7.73 (2 H, d, *J* = 8.7 Hz, Ar-H), 7.43 (2 H, d, *J* = 8.4 Hz, Ar-H), 6.94 (2 H, d, *J* = 8.4 Hz, Ar-H), 5.68 (2 H, s, CH₂), 3.83 (3 H, s, OCH₃); MS, *m/z* 310 (M⁺, 5%), 309 (21, M – H), 308 (86, M – 2 H), 279 (95, M – CH₃O), 265 (23, M – NO₂), 146 (97, M – C₇H₆N₃O₂), 119 (44, M – C₈H₇N₄O₂), 77 (34, M – (NO₂ + C₁₀H₁₀N₃O)), 29 (97, M – C₁₆H₁₄N₂O₃).

Figure 59: FT-IR (KBr) of 4-(4-methoxyphenyl)-1-(4-nitrobenzyl)-1*H*-1,2,3-triazole (Table 3, Entry 18).

Figure 60: ¹H NMR (300 MHz, CDCl₃) of 4-(4-methoxyphenyl)-1-(4-nitrobenzyl)-1*H*-1,2,3-triazole (Table 3, Entry 18).

Figure 61: Mass spectrum of 4-(4-methoxyphenyl)-1-(4-nitrobenzyl)-1*H*-1,2,3-triazole (Table 3, Entry 18).

4-(4-(*tert***-butyl)phenyl)-1-(4-nitrobenzyl)-1***H***-1,2,3-triazole (Table 3, Entry 19) (0.26 g, 77%); white solid (crystals); mp 146-147 °C (from EtOH) (Lit.¹⁰ 145–147 °C); elemental analysis Found: C, 67.67; H, 5.67; N, 16.92. Calc. for C_{19}H_{20}N_4O_2: C, 67.84; H, 5.99; N, 16.66%; FT-IR (KBr): v_{max}/cm⁻¹ 3117, 3084, 2962, 2900, 2865,1604, 1516, 1495, 1457 (CH₂), 1346, 1220 (N–N=N–), 1109 (C–N), 1072, 1044, 976, 835 (=C–H oop, triazole ring), 782, 739, 723, 559; ¹H NMR: \deltaH (300 MHz; CDCl₃; Me₄Si) 8.25 (2 H, d,** *J* **= 8.7 Hz, Ar-H), 7.77 (3 H, d,** *J* **= 7.8 Hz, Ar-H, C=CH), 7.48-7.43 (4 H, m, Ar-H), 5.72 (2 H, s, CH₂), 1.36 (9 H, s, 3 CH₃); ¹³C NMR: \deltaC (75 MHz; CDCl₃; Me₄Si) 151, 148.74, 148.08, 141, 128, 127, 125.64, 125.50, 124, 119, 53, 34, 31; MS,** *m***/***z* **336 (M⁺, 5%), 335 (10, M – H), 334 (28, M – 2 H), 333 (48, M – 3 H), 332 (40, M – 4 H), 290 (20, M – NO₂), 203 (17, M – C₁₀H₁₃), 171 (100, M – C₇H₆N₃O₂), 57 (83, M – C₁₅H₁₁N₄O₂), 28 (37, M – C₁₉H₂₀N₂O₂).**

Figure 62: Elemental analysis of 4-(4-(*tert*-butyl)phenyl)-1-(4-nitrobenzyl)-1*H*-1,2,3triazole (Table 3, Entry 19).

Figure 63: FT-IR (KBr) of 4-(4-(*tert*-butyl)phenyl)-1-(4-nitrobenzyl)-1*H*-1,2,3-triazole (Table 3, Entry 19).

Figure 64: ¹H NMR (300 MHz, CDCl₃) of 4-(4-(*tert*-butyl)phenyl)-1-(4-nitrobenzyl)-1*H*-1,2,3-triazole (Table 3, Entry 19).

Figure 65: ¹³C NMR (75 MHz, CDCl₃) of 4-(4-(*tert*-butyl)phenyl)-1-(4-nitrobenzyl)-1*H*-1,2,3-triazole (Table 3, Entry 19).

Figure 66: Mass spectrum of 4-(4-(*tert*-butyl)phenyl)-1-(4-nitrobenzyl)-1*H*-1,2,3-triazole (Table 3, Entry 19).

2-(1-(4-nitrobenzyl)-1*H***-1,2,3-triazol-4-yl)pyridine (Table 3, Entry 20)** (0.20 g, 72%); yellow solid (crystals); mp 175–177 °C (from EtOH) (Lit.¹³ 176–179 °C); 3114, 3088, 3056, 3007, 2851, 1603, 1511, 1469 (CH₂), 1418, 1348, 1229 (N–N=N–), 1200, 1147 (C– N), 1078, 1046, 995, 859, 808 (=C−H oop, triazole ring), 786, 729, 510; MS, *m/z* 281 (M⁺, 5%), 280 (27, M – H), 278 (20, M – 3 H), 177 (10, M – C₆H₄N₂), 130 (99, M – C₇H₆N₂O₂), 117 (100, M – C₇H₆N₃O₂), 103 (68, M – C₇H₆N₄O₂), 90 (96, M – (NO₂ + C₇H₅N₄)), 78 (98, M – C₉H₇N₄O₂), 28 (74, M – C₁₄H₁₁N₃O₂).

Figure 67: FT-IR (KBr) of 2-(1-(4-nitrobenzyl)-1*H*-1,2,3-triazol-4-yl)pyridine (Table 3, Entry 20).

Figure 68: Mass spectrum of 2-(1-(4-nitrobenzyl)-1*H*-1,2,3-triazol-4-yl)pyridine (Table 3, Entry 20).

1-allyl-4-phenyl-1*H***-1,2,3-triazole (Table 3, Entry 21)** (0.16 g, 90%); yellow (crystals); mp 40 °C (from EtOH) (Lit.¹⁴ 40–41 °C); FT-IR (KBr): v_{max}/cm⁻¹ 3131, 3084, 3035, 2953, 2924, 2853, 1642, 1609, 1485, 1464 (CH₂), 1359, 1225 (N−N=N−), 1171 (C−N), 1045, 990, 913, 810 (=C−H oop, triazole ring), 763, 693, 517; MS, *m*/*z* 185 (M⁺, 5%), 184 (38, M − H), 183 (27, M − 2 H), 116 (78, M − C₃H₅N₂), 83 (75, M − C₈H₆), 69 (76, M − C₈H₆N), 55 (100, M − C₈H₆N₂), 41 (77, M − C₈H₆N₃), 28 (72, M − C₁₁H₁₁N).

Figure 69: FT-IR (KBr) of 1-allyl-4-phenyl-1H-1,2,3-triazole (Table 3, Entry 21).

Figure 70: Mass spectrum of 1-allyl-4-phenyl-1H-1,2,3-triazole (Table 3, Entry 21).

1-allyl-4-(*p*-tolyl)-1*H*-1,2,3-triazole¹⁵ (Table 3, Entry 22) (0.17 g, 85%); white solid (crystals); mp 82-84 °C (from EtOH); FT-IR (KBr): v_{max}/cm^{-1} 3125, 3106, 3027, 2978, 2917, 2859, 1642, 1497, 1451 (CH₂), 1339, 1217 (N–N=N–), 1171 (C–N), 1071, 1048, 988, 933, 817 (=C–H oop, triazole ring), 768, 726, 519; ¹H NMR: δ H (400 MHz; CDCl₃; Me₄Si) 7.73-7.67 (2 H, m, Ar-H, C=CH), 7.26-7.16 (3 H, m, Ar-H), 6.06-6.04 (1 H, m, C=CH), 5.40-5.33 (2 H, m, H₂C=CH), 5.03-4.97 (2 H, m, CH₂), 2.35 (3 H, d, *J* = 9.6 Hz, CH₃); MS, *m*/*z* 199 (M⁺, 36%), 198 (76, M – H), 197 (75, M – 2 H), 170 (56, M – N₂), 143 (36, M – C₃H₅N), 130 (87, M – C₃H₅N₂), 103 (77, M – C₄H₆N₃), 91 (39, M – C₅H₆N₃), 77 (78, M – (CH₃ + C₅H₆N₃)), 41 (73, M – C₉H₈N₃), 28 (44, M – C₁₂H₁₃N).

Figure 71: FT-IR (KBr) of 1-allyl-4-(p-tolyl)-1H-1,2,3-triazole (Table 3, Entry 22).

Figure 72: ¹H NMR (400 MHz, CDCl₃) of 1-allyl-4-(*p*-tolyl)-1*H*-1,2,3-triazole (Table 3, Entry 22).

Figure 73: Mass spectrum of 1-allyl-4-(*p*-tolyl)-1*H*-1,2,3-triazole (Table 3, Entry 22).

allyl-4-(4-methoxyphenyl)-1*H*-1,2,3-triazole (Table 3, Entry 23) (0.18 g, 84%); white solid (crystals); mp 90–91 °C (from EtOH) (Lit.¹⁶ 88–89 °C); FT-IR (KBr): v_{max}/cm^{-1} 3121, 3101, 3051, 2949, 2835, 1618, 1562, 1501, 1455 (CH₂), 1303, 1250 (N–N=N–), 1218, 1175 (C–N), 1078, 1031, 976, 913, 823 (=C–H oop, triazole ring), 775, 620, 538; ¹H NMR: δ H (300 MHz; CDCl₃; Me₄Si) 7.77 (2 H, d, *J* = 8.7 Hz, Ar-H), 7.0 (1 H, s, C=CH), 6.97 (2 H, d, *J* = 8.7 Hz, Ar-H), 6.14-6.01 (1 H, m, H₂C=CH), 5.40-5.33 (2 H, m, H₂C=CH), 5.02 (2 H, d, *J* = 6 Hz, CH₂), 3.85 (3 H, s, CH₃); ¹³C NMR: δ C (75 MHz; CDCl₃; Me₄Si) 159, 147, 131, 127, 123, 120, 118, 114, 55, 52; MS, *m*/*z* 215 (M⁺, 4%), 214 (50, M – H), 213 (96, M – 2 H), 171 (68, M – CH₂), 145 (100, M – C₃H₅), 131 (41, M – C₃H₅N), 117 (41, M – C₄H₆N), 103 (33, M – C₃H₅N₃), 76 (38, M – C₅H₆N₃), 41 (51, M – C₈H₆N₃), 28 (100, M – C₁₁H₁₁N).

Figure 74: FT-IR (KBr) of 1-allyl-4-(4-methoxyphenyl)-1*H*-1,2,3-triazole (Table 3, Entry 23).

Figure 75: ¹H NMR (300 MHz, CDCl₃) of 1-allyl-4-(4-methoxyphenyl)-1*H*-1,2,3-triazole (Table 3, Entry 23).

Figure 76: ¹³C NMR (75 MHz, CDCl₃) of 1-allyl-4-(4-methoxyphenyl)-1*H*-1,2,3-triazole (Table 3, Entry 23).

Figure 77: Mass spectrum of 1-allyl-4-(4-methoxyphenyl)-1*H*-1,2,3-triazole (Table 3, Entry 23).

1-allyl-4-(4-(*tert***-butyl)phenyl)-1***H***-1,2,3-triazole**¹⁵ (**Table 3, Entry 24**) (0.21 g, 93%); yellow (Oil); FT-IR (KBr): v_{max} /cm⁻¹ 2960, 2903, 2866, 1486, 1459 (CH₂), 1362, 1267 (N–N=N–), 1116 (C–N), 1021, 986, 834 (=C–H oop, triazole ring), 616, 561; MS, *m/z* 241 (M⁺, 4%), 239 (16, M – 2 H), 172 (32, M – C₃H₅N₂), 142 (46, M – (C₃H₅ + C₄H₉)), 57 (41, M – C₁₁H₁₀N₃), 41 (44, M – C₁₂H₁₄N₃), 28 (51, M – C₁₅H₁₉N).

Figure 78: FT-IR (KBr) of 1-allyl-4-(4-(*tert*-butyl)phenyl)-1*H*-1,2,3-triazole (Table 3, Entry 24).

Figure 79: Mass spectrum of 1-allyl-4-(4-(*tert*-butyl)phenyl)-1*H*-1,2,3-triazole (Table 3, Entry 24).

2-(4-phenyl-1H-1,2,3-triazol-1-yl)ethan-1-ol (Table 3, Entry 25) (0.14 g, 76%); green solid (crystals); mp 87-91 °C (from EtOH) (Lit.¹⁷ 89 - 92°C); ¹H NMR: δ H (300 MHz; CDCl₃; Me₄Si) 7.74 (1 H, s, C=CH), 7.61 (2 H, d, *J* = 6.6 Hz, Ar-H), 7.46-7.37 (3 H, m, Ar-H), 4.81 (1 H, br s, OH), 4.44 (2 H, t, *J* = 6.0 Hz, H₂C-CH₂OH), 4.06 (2 H, t, *J* = 5.7 Hz, CH₂OH); ¹³C NMR: δ C (75 MHz; CDCl₃; Me₄Si) 147, 129, 128.8, 128.2, 125, 121, 61, 52; MS, *m*/*z* 189 (M⁺, 4%), 188 (30, M – H), 172 (12, M – OH), 117 (86, M – C₃H₆NO),116 (33, M – C₂H₅N₂O), 102 (33, M – C₂H₅N₃O), 77 (48, M – C₄H₆N₃O), 45 (17, M – C₈H₆N₃), 28 (55, M – C₁₀H₁₁NO), 17 (20, M – C₁₀H₁₀N₃).

Figure 80: ¹H NMR (300 MHz, CDCl₃) of 2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)ethan-1-ol (Table 3, Entry 25).

Figure 81: ¹³C NMR (300 MHz, CDCl₃) of 2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)ethan-1-ol

(Table 3, Entry 25).

Figure 82: Mass spectrum of 2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)ethan-1-ol (Table 3, Entry 25).

References

- 1 S. Sun, R. Bai, Y. Gu, Chem. Eur. J., 2014, 20, 549.
- 2 P. V. Chavan, K. S. Pandit, U. V. Desai, M. A. Kulkarni, P. P. Wadgaonkar, RSC Adv.,
- 2014, **4** 42137.
- 3 P. N. Liu, H. X. Siyang, L. Zhang, S. K. S. Tse, G. Jia, J. Org. Chem., 2012, 77, 5844.
- 4 S. Koguchi, K. Nakamura, Synlett, 2013, 24, 2305.
- 5 C. Richardson, C. M. Fitchett, F. R. Keene, P. J. Steel, Dalton Trans., 2008, 2534.
- 6 J. M. Perez, R. Cano, D. J. Ramon, RSC Adv., 2014, 4, 23943.
- 7 J. Zuxi, X. Peng, F. Enqin, Synth. Commun., 2014, 44, 68.
- 8 J. Albadi, A. Alihosseinzadeh, A. Mansournezhad, Acta Chim. Slov.; 2015, 62, 617-624.

- 9 J. T. Fletcher, M. E. Keeney, S. E. Walz, Synthesis, 2010, 3339 3345.
- 10 R. Jahanshahi and B. Akhlaghinia, RSC Adv., 2016, 6, 29210.
- 11 L. Huang, W. Liu, J. Wu, Y. Fu, K. Wang, C. Huo, Z. Du, *Tetrahedron Lett.*, 2014, 55, 2312.
- 12 Y. Jiang, D. Kong, J. Zhao, W. Zhang, W. Xu, W. Li, G. Xu, *Tetrahedron Lett.*, 2014, 55, 2410.
- 13 N. Joshi, S. Banerjee, Tetrahedron Lett., 2015, 56, 4163.
- 14 M. Gupta, M. Gupta, S. Paul, R. Kant, V. K. Gupta, Monatsh. Chem., 2015, 146, 143.
- 15 E. Tasca, S. G. La, L. Sperni, G. Strukul, A. Scarso, Green Chem., 2015, 17, 1414.
- 16 S. Kamijo, T. Jin, Z. Huo, Y. Yamamoto, J. Org. Chem., 2004, 69, 2386.
- 17 R. Romeo, S. V. Giofre, C. Carnovale, A. Campisi, R. Parenti, L. Bandini, M. A, Chiacchio, *Bioorg. Med. Chem.*, 2013, **21**, 7929 -7937.