Spiral frameworks firstly constructed by 1,2phenylene-dioxydiacetic acid as highly sensitive and selective luminescent probes to detect PO43- ions in aqueous solutions

EnjunGao*, Na Sun, Yang Zhan, XueQiu, Yuqing Ding, Shaozhong Zhang, Mingchang Zhu*

Fig.S1.Experimental and simulated powder PXRD patterns of 1-3.

Fig.S2. a: the luminescent excitation spectrum of complex 1, 2 and 3; b and c: The luminescent emission spectrum of complex 1 and 2 excited at 301 nm; d: The luminescent emission spectrum of complex 3 excited at 413 nm.

Fig.S3. Complexes comparison of the luminescence intensity of N–X in $10^{\text{-3}}\text{M}$ $\text{H}_2\text{PO}_4\text{-}$ and $\text{HPO}_4\text{-}\text{2-anions}$

Fig.S4. Comparison of the luminescence intensity of 3-X in 10⁻³ M different anions.

Fig.S5.Comparison of the luminescence intensity of 1-X and 2-X in 10 $^{-3}$ M different anions.

Fig. S6.The intensity plots of $1 \text{ vs} \log [PO_4^{3-}]$

Fig.S7 complex **3** comparison of the luminescence intensity of the ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ transitions (487 nm) of 3–SO₄²⁻ in 10⁻³mol/L anions

Fig.S8. Infrared spectrum of complexes 1-3.

Fig.S9. Absorbance comparative fluorescence spectrum area rhodamine 6G (left) complex 3(right)

Complex	1	2	3
Empirical Formula	$C_{10}H_{12}LaNO_{11} \\$	$C_{10}H_{12}CeNO_{11}$	$C_{10}H_{12}PrNO_{11}$
Formula weight	461.12	462.33	463.12
Crystal system, space group	Monoclinic ,P2(1)/c	Monoclinic, P 2(1)/c	Monoclinic, P2(1)/c
a, (Å)	15.489(6)	15.4860(7)	15.489(6)
b, (Å)	6.174(2)	6.1777(3)	6.174(2)
c ,(Å)	16.745(7)	16.8851(8)	16.745(7)
α(°)	90	90	90
β(°)	115.294(7)	115.4770(10)	115.294(7)
γ(°)	90	90	90
V, Å ³	1447.9(10)	1458.28(12)	1447.9(10)
Z	4	4	4
$\rho_{calcd}, mg/cm^{-3}$	2.115	2.106	2.125
Absorptioncoefficient,mm ⁻¹	3.011	3.182	3.426
Crystal size, mm	0.22 x 0.20 x 0.18	0.22 x 0.20 x 0.18	0.22 x 0.20 x 0.18
θRangefordatacollection	1.45 to 25.40	1.457 to 27.375	2.45 to 25.13
F(000)	896	900	904
Limiting indices	-18≤h≤12,-7≤k≤7,-18≤l≤20	-19≤h≤19,-7≤k≤7,-16≤l≤21	-18≤h≤13,-7≤k≤7,-19≤l≤19
Т	296(2)	296(2)	296(2)
Reflectionscollected/unique	8831/2607[R(int)=0.0192]	8349/1930[R(int)= 0.0435]	6539/2558[R(int)= 0.0492]
Completeness, %	97.7 %	99.5	98.8 %
Data/restraints / parameters	2607 / 6 /220	3250 / 6 / 222	2558 / 6 / 220
GOF	1.080	1.303	1.089
Final R indices $(I > 2\sigma(I))$	R1 =0.0154,wR2 = 0.0366	R1 =0.0165,wR2 = 0.0469	R1 =0.0455,wR2 = 0.1119
R indices (all data)	R1=0.0163,wR2=0.0371	R1 =0.0211,wR2 = 0.0717	R1 =0.0537,wR2 = 0.1163
Largest diff. peak and hole,e.Å-3	0.524 and -0.317 e.Å-3	0.652 and -0.811 e.Å ⁻³	1.902 and -1.613 e.Å-3

Table S1.Crv	vstallographic	dataandstructure	refinementsummary	/ for1-	3
10010 01101					-

1				
O(12)-La(1)	2.7753(18)	O(21)-La(1)	2.677(2)	
O(14)-La(1)	2.4829(19)	C(10)#3-O(16)-La(1)	132.40(15)	
O(16)-La(1)	2.5250(17)	O(17)-La(1)-O(14)	142.46(7)	
O(20)-N(1)-La(1)	57.69(12)	O(17)-La(1)-O(16)	85.53(6)	
O(18)-La(1)	2.534(2)	O(14)-La(1)-O(16)	124.00(6)	
O(20)-La(1)	2.604(2)	C(10)-O(14)-La(1)	129.10(16)	
O(21)-N(1)-La(1)	61.07(12)	C(6)-O(12)-La(1)	121.37(13)	
C(7)-O(12)-La(1)	119.29(13)	O(14)-La(1)-O(15)	69.11(7)	
O(16)-La(1)-O(18)	74.47(7)	O(17)-La(1)-O(18)	72.29(8)	
2				
O(1)-Ce(1)	2.659	O(2)-Ce(1)	2.789	
O(3)-Ce(1)	2.440	O(4)-Ce(1)	2.518	
O(5)-Ce(1)	2.509	O(6)-Ce(1)	2.471	
O(7)-Ce(1)	2.530	O(8)-Ce(1)	2.529	
O(9)-Ce(1)	2.605	O(10)-Ce(1)	2.689	
O(2)-Ce(1)-O(3)	58.30	O(9)-Ce(1)-O(10)	47.82	
3				
O(18)-Pr(1)	2.518(7)	O(20)-Pr(1)	2.569(6)	
N(1)-O(20)-Pr(1)	99.8(5)	O(17)-Pr(1)-O(18)	72.3(2)	
O(14)-Pr(1)-O(18)	132.0(2)	O(16)-Pr(1)-O(18)	73.5(2)	
O(15)-Pr(1)-O(18	139.0(3)	O(19)-Pr(1)-O(18)	75.3(2)	
O(17)-Pr(1)-O(20)	147.0(2)	O(14)-Pr(1)-O(20)	70.6(2)	
O(16)-Pr(1)-O(20)	69.1(2)	O(15)-Pr(1)-O(20)	136.9(3)	
O(19)-Pr(1)-O(20)	115.57(19)	O(18)-Pr(1)-O(20)	81.6(3)	
O(18)-Pr(1)-O(13)	147.2(2)	O(20)-Pr(1)-O(13)	77.2(2)	
O(18)-Pr(1)-O(21)	68.5(2)	O(20)-Pr(1)-O(21)	48.05(19)	
#1 -x+1/2,y+1/2,-z+1/2				

Table S2.Selected bond lengths (Å) and angles (°) of the complex $1\mathchar`-3$