Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supporting Information for

Probing oxygen reduction and oxygen evolution reactions on bifunctional nonprecious metal catalysts for metal-air batteries

Thirupathi Thippani^a, Sudip Mandal, Guanxiong Wang^b, Vijay K. Ramani^b, and R. K. Raman^{a,*}

^aDepartment of Chemistry,

Indian Institute of Technology Madras, Chennai 600 036 India. ^{b.}Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago IL 60616, USA

*Author to whom all correspondence should be addressed

E-mail address: rkraman@iitm.ac.in

Catalyst	Element (in wt. %)						
	Со	N	0	С			
N-MWCNTs-Co-800-	0.86	2.2	5.13	91.8			
20min							
N-MWCNTs-Co-800-	1.12	1.85	6.84	90.18			
60min							
N-MWCNTs-Co-800-	0.52	0.92	9.14	89.42			
120min							

Table S1 Elemental composition obtained through XPS analysis for the three catalysts

Table S2 Corrosion parameters extracted from the potentiodyanmic Tafel plots

Catalyst	I _{corr} (μA)	E _{corr} (mV vs. Hg/HgO)	β _a (mV dec ⁻¹)	β _c (mV dec ⁻¹)	R _p (Ohm cm ²)
Ketjenblack carbon	21.642	-362	977	23	90
N-MWCNTs-Co-800- 120min	2.311	-326	88	43	1048

$$R_p = \frac{1}{i_{corr}(\beta_a + \beta_c)} \frac{\beta_a \beta_c}{2.303}$$

Where,

 R_p = polarization resistance

 $i_{corr} = corrosion current$

 β_a = anodic tafel constant

 β_c = cathodic tafel constant

Fig. S2 ORR active site envisioned in the literature (J. P. Dodelet et al. J. Phys. Chem. B 2002, 106, 8705-8713 & Michel Lefèvre et al. Science 324, 71 (2009))

Fig. S3 (a) Powder XRD patterns and (b) Raman spectra of N-MWCNTs-Co-800-20min and N-MWCNTs-Co-800-60min

Fig. S4

Fig. S4 TGA profile of N-MWCNTs-Co-800-120min and the inset shows the XRD pattern of Co_3O_4 .

Fig. S5

Fig. S5 XPS spectra of N-MWCNTs-Co-800-20min

Fig. S6 XPS spectra of N-MWCNTs-Co-800-60min

Fig. S7

Fig. S7 (a) ORR polarization curves for N-MWCNTs-Co-800-20min, N-MWCNTs-Co800-60min, N-MWCNTs-Co800-120min catalysts and (b) N-MWCNTs-Co-800-120min, N-MWCNTs-Co-700-120min, N-MWCNTs-Co-800-120min and N-MWCNTs-Co-900-120min. Experimental conditions: Oxygen saturated 0.1 M KOH, RDE rotation rate 1600 rpm, catalyst loading 0.2 mg cm⁻², scan rate 5 mV s⁻¹.

Fig. S8 ORR polarization curves of the 20 wt.% Pt/C measured in O_2 -saturated KOH solutions and 20 wt.% Ir O_2 /C in 0.1 M KOH.

Fig. S9 ORR Koutecky-Levich plots of N-MWCNTs-Co-800-120min in O_2 saturated KOH: (a) 0.1 M (b) 1M (c) 4M and (d) 6M.

As per K-L theory, ORR is assumed to follow first-order kinetics with respect to dissolved oxygen concentration and the measured disk current (i_d) can be expressed as shown below:

$$\frac{1}{i_d} = \frac{1}{i_k} + \frac{1}{i_L} + \frac{1}{i_f}$$
[1]

Where i_k , i_L and i_f are the kinetic current, diffusion-limited current, and diffusion limiting current within the Nafion[®] ionomer layer respectively.

Furthermore, i_k , i_L and i_f can be expressed by equations 2,3 &4 respectively.

$$i_k = nFAkC_{O_2}$$
^[2]

$$i_{L} = 0.201 \, n \, F \, A \, C_{O_{2}} D_{O_{2}}^{\frac{2}{3}} v^{\frac{-1}{6}} \omega^{\frac{1}{2}} = B \, n \, \omega^{\frac{1}{2}}$$
[3]

$$i_f = nFAC_{0_2}^{f}D_{0_2}^{f}L^{-1}$$
[4]

where F is the Faraday constant (96500 C/mole of electrons), A is the geometric area of the disc electrode (0.196 cm²), C_{02} (mol cm⁻³) is the dissolved oxygen concentration, D_{02} is the diffusion coefficient of oxygen, v (cm² s⁻¹) is the kinematic viscosity of the electrolyte, C_{02}^{f} and D_{02}^{f} are the concentration and diffusion coefficient of O₂ in Nafion[®] ionomer, ω is the rotation per minute (rpm), k (cm s⁻¹) is the rate constant for ORR and L(cm) is the thickness of Nafion[®] ionomer layer. In our experiments, the thickness of the Nafion[®] ionomer layer was calculated to be 0.13 µm, assuming that the density of Nafion[®] to be 2g cm⁻³. On assuming that the C_{02}^{f} and D_{02}^{f} in Nafion[®] film is similar to the corresponding values in KOH solution[ref. 47], I_f

 $^{0}2^{\text{untuble}_{2}}$ in Nafion[®] film is similar to the corresponding values in KOH solution[ref. 47], I_f is calculated to be 606, 398, 100 and 37 mA cm⁻² for 0.1M, 1 M 4 M and 6 M KOH solution respectively.

Fig. S10

Fig. S10 Nyquist plots obtained using N-MWCNTs-Co-800-120min catalyst coated RDE in (a) N_2 -saturated 0.1 M KOH solution and in O_2 -saturated (b) 1M (c) 4M and (d) 6M KOH solutions at -0.08, -0.1, -0.12 and -0.14 V vs. Hg/HgO.

Fig. S11

Fig. S11 Linear sweep voltammetry (LSV) of the N-MWCNTs-Co- 800^{0} C-120min with EQCM, measured in (a) N₂-saturated and (b) O₂ saturated 0.1 M KOH solution.

Fig. S12 Nyquist plots obtained using 20 wt.% Pt/C catalyst coated RDE in O_2 -saturated (a) 0.1 M,(b) 1 M, (c) 4 M and (d) 6 M KOH solutions at -0.02 , -0.04,and -0.06V vs. Hg/HgO (Circuit used to fit the experimental data is provided as inset in Fig. S12(a)).

Fig. S13

Fig. S13 (a) OER polarization curves of 20 wt.% Pt/C and (b) 20 wt.% IrO_2/C in N_2 -saturated 0.1 M, 1 M, 4 M and 6 M KOH solution.

Fig. S14

Fig. S14 OER polarization curves of the 20 wt. % Pt/C and 20 wt. % IrO_2/C measured in N₂-saturated 4 M KOH solution with and without 0.2 M zinc acetate.

Fig. S15 Nyquist plots obtained using N-MWCNTs-Co-800-120min catalyst coated RDE in N_2 -saturated (a) 0.1 M ,(b) 1 M, (c) 4 M and (d) 6 M KOH solutions at 0.720 , 0.740, 0.760 and 0.780V vs. Hg/HgO (Circuit used to fit the experimental data is provided as inset in Fig. S15 (a)).

Fig. S16 Nyquist plots obtained using 20 wt.% Pt/C catalyst coated RDE in N₂-saturated (a) 0.1 M ,(b) 1 M, (c) 4 M and (d) 6 M KOH solutions at 0.720 , 0.740,0.760 and 0.780V vs. Hg/HgO (Circuit used to fit the experimental data is provided as inset in Fig. S16(a)).

Fig. S17 Plot of R_{ct} versus potential in various KOH solutions for (a) N-MWCNTs-Co-800-120min and (b) 20 wt. % Pt/C catalyst.

Fig. S18

Fig. S18 OER activity of N-MWCNTs-Co-800-120min measured in N_2 saturated 0.1M KOH solutions with and without Bpy and EDTA.

Fig. S19

Fig. S19 OER and ORR polarization measured at the disk and ring respectively in 0.1M KOH N_2 - saturated solution of N-MWCNTs-Co-800-120 min.

Fig. S20 50 cycles of OER polarization curves of the (a) N- N-MWCNTs-Co-800-120min and (b) Ketjenblack carbon measured in N_2 -saturated 0.1 M KOH solution.

Fig. S21 Potentiodynamic polarization curves for Ketjenblack carbon (reference) and N-MWCNTs-Co-800-120min measured in 0.1 KOH solution at 20 mV s⁻¹ scan rate.

Fig.S22 Charge-discharge curves of a zinc-air battery measured at 0.5 A g⁻¹ current density (one cycle includes 15 min of discharge followed by 15 min of charge). Catalyst used is N-MWCNTs-Co-800-120min.

Fig. S23 Shows the (a) photograph of the electrodes N-MWCNTs-Co-800-120min and zinc coated carbon felts respectively and (b) the experimental zinc-air battery setup.

Fig.S24 Compares the SEM micrograph of the (a) carbon felt, (b) zinc-coated carbon felt and (c) EDAX performed on (b).