ELECTRONIC SUPPORTING INFORMATION FOR:

Exfoliation of graphite and graphite oxide in water by chlorin e₆

Dania Hernández-Sánchez, Mattia Scardamaglia, Sonia Saucedo-Anaya, Carla Bittencourt, and Mildred Quintana

Initial concentrations (mg/ml)	Ce₀ 0 mg/ml Graphite 1 mg/ml	ng/ml *Ce₅ 0.2 mg/ml ite 1 *Graphite 0.1 mg/ml			E1 Ce₅ 1 mg/ml Graphite 0.1 mg/ml			ı	E2 Ce₀ 0.2 mg/ml Graphite 1 mg/ml		E3 Ce ₆ 1 mg/ml Graphite 1 mg/ml		E4 Ce ₆ 5 mg/ml Graphite 1 mg/ml		
Final FLG (mg/ml)		0.0		0.02		0.02			0.003	0.001	0.005	0.1	0.03	0.0	6
Sample	mple Graphite		∙Ce ₆ *Fl S	*FLG-Ce ₆ DW		FLG-Ce ₆ PBS		6	FLG-Ce ₆ PBS	FLG-Ce ₆ DW	FLG-Ce ₆ PBS	FLG-Ce₅ DW	FLG-Ce ₆ PBS	FLG-C DW	.e ₆
		L			-								ľ		k
Final Ce₅ (mg/ml)		0.0	01 (.02	0.0	01	0.08	3	0.0006	0.001	0.0005	0.4	0.005	0.9	9
Initial concentratio (mg/ml)	ons Ce₅ 0 m GO 1 m	s Ce₅ 0 mg/ml GO 1 mg/ml		*Ce₅ 0.2 mg/ml *GO 0.1 mg/ml		າໄ E1 າໄ Ce₅ 1 mi GO 0.1 m		1 mg, mg	:/ml Ce ₆ 0. g/ml GO 1		E2 2 mg/ml .mg/ml		E3 Ce₀ 1 mg/ml GO 1 mg/ml		
Final GC (mg/ml)		1		.02 0.)5 0.0		02 0.06		0.01	0.07	0.:	1 0	.1	
Sample	GC	GO ^{*GO} F		-Ce ₆ *GO-C BS DW		e ₆ GO-Ce ₆ PBS		GO-Ce₀ DW		GO-Ce ₆ PBS	O-Ce ₆ GO-Ce ₆ PBS DW		Ce ₆ GC S C	GO-Ce ₆ DW	
Ce₀ fina (mg/ml	al)	-	0.01	0.	.01	0.	04	0	0.04	0.03	0.04	0.0	04 0.	07	

*Conditions reported in the main text

SI-1.

SI. Representative images of the final dispersions obtained in different set of experiments with different concentrations of Ce_6 , graphite or graphite oxide. The exfoliation of

graphite was not observed without the presence of Ce_6 while GO is well dispersed in both solvents. The amount of FLG, GO and Ce_6 were determined using the absorption coefficient α obtained from calibration plots by optical absorbance (see **S5**).

S2. Chemical structure of Ce₆.

S3. Absorption spectra of Ce_6 in the solvents used during the study.

S4. Uv- vis absorption and emission spectra of $FLG-Ce_6$ nanohybrids in PBS and DW taken every 15 minutes during the 195 minutes sonication process.

S5 a) Calibration plots by optical absorbance divided by cell length (A/L) as a function of concentration for FLG and GO dispersed in PBS and DW. The amount of graphene dispersed was determined using the absorption coefficient α , at a wavelength where Ce₆ molecules do not show any absorption, so the absorbance measured is related exclusively

to the concentration of graphene in the dispersions. b). Calibration plots of Free Ce₆ dissolved in methanol (MeOH), MeOH- PBS and MeOH- DW. The amount of Ce₆ in the nanohybrids was determined using the absorption coefficient α , at a 404 nm (Soret band) of the Ce₆ molecules, so the absorbance measured is related exclusively to the concentration of Ce₆ in the nanohybrids.

S6. Uv- visible absorbance spectra of the final dispersions of each nanohybrid. Not normalized data.

S7. Comparison of the fluorescence emission spectra (λ_{exc} = 404 nm) of the final nanohybrids.

		Calo	culation			
		V,	cm ⁻¹		*\/ibrational pattern	
*Ce (I)	Free	FLG-Ce₀-	FLG-Ce₀-	GO-Ce₅-	GO-Ce₅-	
066 (1)	Ce₅	PBS	DW	PBS	DW	
677	683					$C_aC_b(II), C_bC_1(II), f_{as}(III)$
783	745					$C_a C_m C_a(\alpha, \beta, \delta), \rho(C_a C_m, \gamma)$
898	872		880			$\rho(C_{2v}H)$
908						$C_{1e}C_{2e}(II), C_aC_b(II), C_aC_mC_a(\alpha)$
978	986	983	980	979	979	$C_{1\nu}C_{2\nu}H, C_{2\nu}C_{1\nu}H, C_bC_b(I)$
989						$C_{1\nu}C_{2\nu}H, C_{2\nu}C_{1\nu}H, C_bC_b(I)$
996						$C_1C_2(IV)$, $C_3C_2H(IV)$, $HC_1C_2(IV)$
1114	1119	1114	1119	1120	1120	$C_aN(I, II, III), C_bC_M(II, III), C_aNC_a(I, II, III)$
1123						$C_aN(I, II, III), C_bC_M(I), C_aNC_a(I, III),$
1125						$C_aN(I, III, IV), C_bC_M(I, IV), C_mC_aN(I, III) C_aNC_a(I, III)$
1127						$C_a N(III, II, I), C_b C_{1e}(II)$
1155	1160	1161	1163	1162	1162	$C_aN(I, II), C_aC_m(\alpha), C_aC_b(I, II), C_aNC_a(I, II, III)$
1158						$C_aN(IV)$, CaCm(γ), CbCbH(IV), $C_bC_1C_2(IV)$
1162						$C_bC_b(IV), C_bC_bH(IV), C_aC_b(II)$
1226	1237	1232	1235	1233	1233	$C_aC_b(II-IV)$, $C_aN(I)$, $C_aC_mH(\alpha)$, $C_aNH(I)$, $C_aC_b(I, II)$
1228						IV), $C_a C_m(\alpha, \delta)$, $C_b C_{1v}(I)$, $C_a NH(I)$, $C_a C_m H(\alpha, \delta)$
1304	1309	1309	1303			$C_aN(III, IV), C_bC_bH(IV), C_mC_aN(\gamma)$
1357	1352	1352	1353	1350	1350	$C_aC_b(III, II), C_aN(III, II), C_mC_aN(II, III)$
1439	1454		1445			$HC_{M}H(I), C_{a}C_{b}(I), C_{a}N(I), C_{a}C_{b}C_{b}(I), C_{m}C_{a}C_{b}(I)$
1442						$HC_MH(III, II), C_aN(III), C_bC_M(III), C_aC_b(III)$
1452						$HC_{M}H(IV), C_{a}C_{m}(\beta, \gamma, \alpha)$
1484	1478	1483	1472			$C_a C_m(\alpha, \beta, \gamma), C_b C_b(III), C_a N(I-III), C_a NH(I, III)$
1563	1544	1541	1543			$C_a C_m(\alpha, \beta), C_a C_m H(\alpha, \beta), C_a NH(I)$
1579		1579	1579	1593	1593	$C_bC_b(II), C_aC_m(\beta), C_bC_M(II)$
1609	1603	1612	1608	1603	1605	$C_aC_m(\beta, \alpha), C_bC_b(II), C_aC_mH(\beta, \alpha)$

(*) Taken from ref. 24

S8. Raman spectral assignments of free Ce_6 and the nanohybrids.

S9. C1s core levels recorded for Ce₆ powder, FLG (DMF) and GO were measured as controls. The N1s core level of the Ce₆ powder is composed by two peaks related to N-H and C=N bonds and a small shake-up satellite. The main peaks in principle should be equivalent, the slightly lower amount of C=N component can be due to a possible tiny oxidation of the molecules since the powder was not outgassed in UHV prior to the XPS measurements. (b,c,d) Nitrogen signal, in a range from 1.3 to 2.3 at. %, was found on FLG- Ce₆-PBS, FLG- Ce₆-DW and GO-Ce₆-PBS nanohybrids confirming the presence of the molecules; the amount of N1s in GO-Ce₆-PBS was less than 1% (data not shown). In average a higher signal was recorded on the samples in DW, confirming the Raman results. The lineshape of the nitrogen core level on the hybrids preserves the double peak feature, even though with a larger FWHM (from 1.3 eV in the Ce₆ powder to 2.0 eV).