

Supplementary information

Fig.1. Overlay of Nyquist plots of (a) bare GCE (b) p-PTSA GCE in 5 mM [Fe(CN)₆]^{3-/4-} in 0.1 M KCl at a frequency range 0.1 - 10⁵ Hz

Fig. 2. Overlay of CV of (a) bare GCE (b) p-PTSA GCE in 2 mM K₄[Fe(CN)₆] in 0.1 M KNO₃ at 100 mV s⁻¹

Fig. 3. Overlay of CV obtained in 2 mM $K_4[Fe(CN)_6]$ in 0.1 M KNO_3 at scan rates ranging from 10 mV $s^{\text{-1}}$ to 100 mV $s^{\text{-1}}$

Fig. 5. Overlay of LSV of a solution of 0.1 M NaOH containing 500 μ M of (A) Adenine (B) Uric Acid and (C) Guanine on *p*-PTSA GCE. Inset of each overlay shows the plot of peak current vs square root of scan rate

Fig.6. Overlay of SWV of 0.5 mL to 1.5 mL of 0.14 mg mL⁻¹ of acid denatured HS DNA in 0.1 M NaOH obtained on p-PTSA/GCE.

Analyte	Linear Range	Regression equation	R ²	LOD µM	
G	3 μM to 10 μM	<i>lp</i> (μA) = - 8.09 + 3.95 C (μM)	0.9913	0.0070	
	10 μM to 300 μM	<i>lp</i> (μ A) = + 28.5 + 0.76 <i>C</i> (μ M)	0.9972		
А	5 μM to 45 μM	$Ip (\mu A) = -0.10 + 0.05 C (\mu M)$	$) = -0.10 + 0.05 C (\mu M) 0.9934$		
	50 μM to 1500 μM	$Ip (\mu A) = -3.16 + 0.12 C (\mu M)$	0.9969	0.94	
UA	20 µM to 100 µM	$Ip (\mu A) = -1.12 + 0.08 C (\mu M)$	0.9962	3.31	
	90 μM to 1500 μM	$Ip (\mu A) = +6.34 + 0.02 C (\mu M)$	0.9941		
G	20 μM to 200 μM	$Ip (\mu A) = +0.42 + 0.10 C (\mu M)$	0.9985	2 00	
(in presence of 100 μM of A and UA)	250 μM to 1000 μM	$Ip (\mu A) = +10.7 + 0.04 C (\mu M)$	0.9923	5.08	
А	10 uM to 120 uM	$(\mu \Lambda) = -0.13 \pm 0.05 C (\mu \Lambda)$	0 9950	2 16	
(in presence of 50 μM of G and UA)		$10^{-1} (\mu R) = 0.13^{-1} 0.03^{-1} C (\mu R)$	0.9950	5.10	
UA	20 μM -110 μM	<i>lp</i> (μA) = + 0.64 + 0.06 <i>C</i> (μM)	0.9974	7 /0	
(in presence of 100 μ M of G and A)	100 μM - 1000 μM	<i>Ip</i> (μA) = + 3.35 + 0.03 <i>C</i> (μM)	0.9902	7.45	

Table 1. Statistical parameters for determination of the analytes

Electrode	Technique	Analyte	<i>Ep</i> (mV)	Linear range (µM)	LOD (µM)	Reference
Ag-PMel/GCE	SWV	G	850	0.1–50	.008	
		А	1100	0.1-60	.008	5
		UA	450	0.1-50	0.1	
PMel/GCE	C) 4/1 /	G	840	0.1-50	.08	24
	5 V V	А	1152	0.1-60	.07	
nano-Au/DNA/nano- Au/poly(SFR)/GCE		G	520	0.009-5.0	0.0005	
	DPV	А	900	0.06-0.8	.004	6
		UA	320	0.09-12	.008	
		G	880	3.3-103.3	0.48	
PImox–GO/GCE	DPV	А	1200	9.6-215	1.28	12
		UA	530	3.6-249.6	0.59	
PANI/MnO ₂ /GCE	001/	G	610	10-100	4.8	22
	DPV	А	880	10-100	2.9	
p-PTSA/GCE	SWV	G	304	10-100	0.35	
		А	608	20-100	0.78	This work
		UA	-108	10-100	5.88	

Table 2. Comparison of the developed sensor with other recent polymer modified sensors based on

GCE

Species	Concentration µM	Signal change (%)				
		Guanine	Adenine	Uric Acid		
Cytosine	10	-1.1	-4.3	-2.5		
Thymine	50	-2.0	-17.0	-4.9		
Uracil	10	-0.1	-3.4	-4.5		
Homovanillic Acid	50	-1.3	-10.0	-4.7		
Dopamine	100	-6.8	-3.7	-2.9		
Serotonin	10	>+20	-5.4	>+20		
Melatonin	10	>+20	Peak disappears	Peak disappears		
Glutathione	10	-0.8	-4.0	-4.3		
Ascorbic Acid	50	-3.4	-8.3	Peak disappears		
K+	10	-1.3	+1.4	-9.9		
Ca+	10	+8.4	-1.3	-6.4		

Table 3. Signal change produced by possibly co-existing species on the simultaneous determination of 10 μM G, A and UA