Electronic Supplementary Information

Phosphine-Catalyzed [3+2] Cycloaddition of Phthalazinium Dicyanomethanides with Allenoates: Highly Efficient Synthesis of 1,2,3,10b-Tetrahydropyrrolo[2,1-a]phthalazine Derivatives

Chunhao Yuan, Leijie Zhou, Zhanhu Sun, and Hongchao Guo*

Department of Applied Chemistry, China Agricultural University, Beijing 100193, China

Email: hchguo@cau.edu.cn

Contents

General Information	S2
Preparation of Azomethine Ylides 1 and 4	S2–S3
Preparation of Allenoates 2	S3
General Procedure for Phosphine-Catalyzed [3 + 2] Cycloaddition	S3
Analytic and Characterization Data for the Products 3, 5 and 6	S4–S16
Transformations of the Product 3ai	S16–S17
¹ H and ¹³ C NMR Spectra of All Products 3-7 and 2D NMR Spectra	S18–S46
X-Ray Crystallographic Data of 3aa, 3ga, 6, 7 and 3aa'	S47–S108

General Information

All reactions were performed under N₂ atmospheres in oven-dried glassware with magnetic stirring. Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. All solvents were purified and dried according to standard methods prior to use. Organic solutions were concentrated under reduced pressure on a rotary evaporator or an oil pump. Reactions were monitored through thin layer chromatography (TLC) on silica gel–precoated glass plates. Chromatograms were visualized by fluorescence quenching with UV light at 254 nm. Flash column chromatography was performed using Qingdao Haiyang flash silica gel (200–300 mesh). Infrared spectra were recorded using a Bruker Optics TENSOR 27 instrument. ¹H and ¹³C NMR spectra were recorded in CDCl₃ or DMSO- d_6 using a 300 MHz NMR instrument (referenced internally to Me₄Si). ¹H NMR data are reported as follows: chemical shift, multiplicity (s = singlet; d = doublet; q = quartet; m = multiplet; br = broad), coupling constant (Hz), and integral. Data for ¹³C NMR spectra are reported in terms of chemical shift. Optical rotation was obtained on a Perkin-Elmer 343 polarimeter. Accurate mass measurements were performed using an Agilent instrument with the ESI-MS technique. Melting points were determined on a Stuard SMP3 melting apparatus. X-ray crystallographic data were collected using a MM007HF Saturn724+.

Preparation of Azomethine Ylides 1 and 4

Phthalazinium dicyanomethanides 1¹. Phthalazine or phthalazine derivative^{2,3} (14.58 mmol) was added to a solution of TCNEO⁴ (4.86 mmol) in THF (50 mL) at 0 °C. The reaction was stirred at this temperature during 2 h. Then, the formed solid was filtrated and washed with cold THF (3×25 mL) to give the product in nearly quantitative yield.

By HPLC analysis, the ratio of two isomers was, 1b : 1c = 33 : 67.

Isoquinolinium-2-dicyanomethanide 1g¹. Isoquinoline (2.77 g, 21.4 mmol) was added to a solution of TCNEO⁴ (6.00 g, 41.6 mmol) in THF (50 mL) at 0 °C. The reaction was stirred at 4 °C during 20 h. Then, the solvent was evaporated and the formed solid was recrystalized in EtOH (3.23 g, 78%).

¹ Naiara, F.; Luisa, C.; Jose, L. V.; Dolores, B.; Efraim, R. Chem. Commun. 2011, 47, 12313.

² Simon, N. K.; Hermann, A. W. Org. Lett. 2012, 14, 3268.

³ Timothy, J. M.; Yunus, E. T.; Noumaan, A. S.; Christopher, M.; Chintan, S. S.; Viresh, H. R.; Sergey, A. K. Angew. Chem. Int. Ed. **2013**, *52*, 13576.

⁴ Linn, W. J.; Webster, O. W.; Benson, R. E. J. Am. Chem. Soc. 1965, 87, 3651.

Pyridazinium dicyanomethanide 4⁴. A solution f pyridazine (0.98 mL, 7.0 mmol) in ethyl acetate (20 mL) was cooled to below 0 °C in an ice-bath. This was treated dropwise with a cooled ethyl acetate solution (5 mL) of TCNEO⁴ (1.0 g, 7.0 mmol). The yellow product precipitated from the solution and was collected in three crops as the 1,3-dipole gradually separated from the solution (0.69 g, 70%).

Preparation of Allenoates 2⁵

$$Ph_{3}P \frown CO_{2}Et \xrightarrow{X \frown R} Ph_{3}P \xrightarrow{P} CO_{2}Et \xrightarrow{R} 2 equiv. Et_{3}N \xrightarrow{R} CO_{2}Et \xrightarrow{R} CO_{2}Et \xrightarrow{R} CO_{2}Et \xrightarrow{R} CO_{2}Et$$

The pertinent alkyl halide (1.0-1.2 equiv) was added to a stirred solution of (carbethoxymethylene)triphenylphosphorane in CHCl₃ (80 mL) at room temperature. The mixture was heated under reflux until all of the (carbethoxymethylene)triphenylphosphorane had disappeared (monitored using TLC or ¹H NMR). The solvent was evaporated under reduced pressure. DCM (100 mL) and triethylamine (8.4 mL, 2.2 equiv) were added to the resulting phosphonium salt. After stirring for 1 h, AcCl (1.96 mL, 1.0 equiv) was added dropwise over 30 min using a syringe pump. The mixture was stirred overnight and then passed through a Buchner funnel packed with silica gel and washed several times with DCM. The combined filtrates were carefully concentrated and the residue subjected to a flash column chromatography (eluent: 10–15% EtOAc in hexanes) to afford the corresponding allenoates in 50–85% yield.

General Procedure for the [3+2] Cycloaddition Reactions of Azomethine Ylides and Allenoates

Under a nitrogen atmosphere, to a stirred solution of Ylides 1 (0.1 mmol, 1.0 equiv) and catalyst PMe₃ (0.02 mmol, 20 mol %) in DCM (1 mL) was added Allenoate 2 (0.15 mmol, 1.5 equiv) via a syringe. Then the reaction solution was vigorously stirred at room temperature and monitored by TLC. After the reaction was complete, the mixture was directly purified by column chromatography on silica gel (petroleum ether/EtOAc as the eluent) to furnish the corresponding product.

⁵ (a) Buono, G. Tetrahedron Lett. 1972, 13, 3257. (b) Zhu, X.-F.; Lan, J.; Kwon, O. J. Am. Chem. Soc. 2003, 125, 4716.

Characterization Data for the [3+2] Cycloaddition Products 3, 5 and 6

(Z)-Ethyl 2-(3,3-dicyano-1,10b-dihydropyrrolo[2,1-*a*]phthalazin-2(3*H*)-ylidene)-3-phenylpropanoate(3aa)

Prepared according to the general procedure as described above in 95% yield (37.7 mg). It was purified by flash chromatography (16% EtOAc/PE) to afford a white solid. mp = 145 – 147 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.81 (s, 1H), 7.50 (td, J = 7.4, 1.5 Hz, 1H), 7.46 – 7.40 (m, 1H), 7.39 – 7.31 (m, 3H), 7.30 – 7.24 (m, 1H), 7.23 – 7.18 (m, 2H), 7.11 (d, J = 7.4 Hz, 1H), 4.54 – 4.23 (m, 3H), 3.90 (q, J = 15.4 Hz, 2H), 3.36 (dd, J = 16.4, 5.8 Hz, 1H), 3.04 (ddd, J = 16.4, 10.2, 1.4 Hz, 1H), 1.37 (t, J = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 164.6, 146.4, 140.8, 136.4, 134.3, 133.4, 132.2, 129.0, 128.9, 128.0, 127.0, 126.3, 125.1, 123.4, 112.7, 111.4, 62.5, 59.3, 54.4, 36.0, 33.1, 13.8; IR (film) v_{max} 577, 600, 666, 702, 722, 739, 763, 883, 940, 1032, 1074, 1109, 1144, 1210, 1300, 1369, 1454, 1495, 1562, 1604, 1712, 2984, 3030 cm⁻¹; HRMS (ESI) calcd for C₂₄H₂₀N₄O₂Na⁺ [M+Na]⁺ 419.1478, found 419.1479.

(Z)-Ethyl 2-(3,3-dicyano-1,10b-dihydropyrrolo[2,1-*a*]phthalazin-2(3*H*)-ylidene)-3-(2-fluorophenyl)propanoate (3ab)

Prepared according to the general procedure as described above in 91%yield (37.7 mg). It was purified by flash chromatography (16% EtOAc/PE) to afford a white solid. mp = 143 – 145 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.82 (s, 1H), 7.51 (td, *J* = 7.5, 1.5 Hz, 1H), 7.46 – 7.41 (m, 1H), 7.37 – 7.34 (m, 1H), 7.32 – 7.17 (m, 2H), 7.17 – 7.10 (m, 2H), 7.10 – 7.01 (m, 1H), 4.56 – 4.18 (m, 3H), 3.88 (dd, *J* = 43.5, 15.4 Hz, 2H), 3.44 (dd, *J* = 16.4, 5.8 Hz, 1H), 3.06 (ddd, *J* = 16.5, 10.2, 1.5 Hz, 1H), 1.38 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 164.4, 161.0 (d, *J* = 245.6 Hz), 146.4, 141.0, 133.5, 133.1, 132.2, 130.0 (d, *J* = 4.1 Hz), 128.9 (d, *J* = 8.2 Hz), 128.9, 126.3, 125.1, 124.6 (d, *J* = 3.5 Hz), 123.4, 123.4 (d, *J* = 15.3 Hz), 115.6 (d, *J* = 22.0 Hz), 112.6, 111.3, 62.5, 59.3, 54.4, 32.9 (d, *J* = 3.0 Hz), 29.6, 13.8; IR (film) v_{max} 522, 580, 600, 666, 758, 798, 870, 883, 935, 1031, 1101, 1143, 1233, 1264, 1292, 1369, 1454, 1491, 1585, 1659, 1713, 2352, 2853, 2924 cm⁻¹; HRMS (ESI) calcd for C₂₄H₁₉FN₄O₂Na⁺ [M+Na]⁺ 437.1384, found 437.1385.

(Z)-Ethyl 2-(3,3-dicyano-1,10b-dihydropyrrolo[2,1-*a*]phthalazin-2(3*H*)-ylidene)-3-(3-fluorophenyl)propanoate (3ac)

Prepared according to the general procedure as described above in 96%yield (39.8 mg). It was purified by flash chromatography (16% EtOAc/PE) to afford a white solid. mp = 155 – 156 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.82 (s, 1H), 7.51 (td, *J* = 7.4, 1.5 Hz, 1H), 7.46 – 7.41 (m, 1H), 7.38 – 7.25 (m, 2H), 7.13 – 7.11 (m, 1H), 7.00 – 6.91 (m, 3H), 4.54 – 4.17 (m,3H), 3.88 (q, *J* = 15.8 Hz, 2H), 3.35 (dd, *J* = 16.4, 5.8 Hz, 1H), 3.05 (ddd, *J* = 16.5, 10.2, 1.3 Hz, 1H), 1.38 (t, *J* = 7.2 Hz, 3H).¹³C NMR (75 MHz, CDCl₃) δ 164.4, 163.1 (d, *J* = 246.9 Hz), 146.5, 141.3, 138.9 (d, *J* = 7.2 Hz), 133.5 (d, *J* = 24.0 Hz), 132.2, 130.5 (d, *J* = 8.4 Hz), 128.9, 126.3, 125.1, 123.4 (d, *J* = 2.9 Hz), 123.4, 115.1 (d, *J* = 21.8 Hz), 114.1 (d, *J* = 21.0 Hz), 112.6, 111.2, 62.7, 59.3, 54.4, 35.7 (d, *J* = 1.5 Hz), 33.1, 13.8; IR (film) v_{max} 520, 581, 600, 666, 686, 723, 737, 802, 866, 883, 945, 1032, 1109, 1143, 1209, 1265, 1299, 1370, 1452, 1488, 1563, 1590, 1614, 1713, 2810, 2965 cm⁻¹; HRMS (ESI) calcd for C₂₄H₁₉FN₄O₂Na⁺ [M+Na]⁺437.1384, found 437.1385.

(Z)-Ethyl 2-(3,3-dicyano-1,10b-dihydropyrrolo[2,1-*a*]phthalazin-2(3*H*)-ylidene)-3-(4-fluorophenyl)propanoate (3ad)

Prepared according to the general procedure as described above in 99%yield (41.0 mg). It was purified by flash chromatography (16% EtOAc/PE) to afford a white solid. mp = 168 – 169 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.81 (s, 1H), 7.51 (td, *J* = 7.5, 1.5 Hz, 1H), 7.46 – 7.41 (m, 1H), 7.37 – 7.34(m, 1H), 7.31 – 7.20 (m, 3H), 7.14 – 7.11(m, 1H), 7.09 – 7.01 (m, 1H), 4.53 – 4.20 (m, 3H), 3.97 – 3.71 (m, 2H), 3.35 (dd, *J* = 16.4, 5.8 Hz, 1H), 3.05 (ddd, *J* = 16.4, 10.2, 1.3 Hz, 1H), 1.38 (t, *J* = 7.2 Hz, 3H).¹³C NMR (75 MHz, CDCl₃) δ 164.3, 146.5, 139.9 (d, *J* = 216.4 Hz), 134.7, 133.4 (d, *J* = 19.2 Hz), 132.2, 130.3, 128.9, 128.4, 127.3, 126.3, 125.9, 125.1, 123.4, 112.6, 111.2, 62.7, 59.3, 54.4, 35.7, 33.2, 13.8; IR (film) v_{max} 668, 677, 724, 738, 772, 794, 883, 918, 944, 1034, 1108, 1142, 1221, 1263, 1296, 1368, 1430, 1474, 1575, 1597, 1658, 1708, 2350, 2357, 2964 cm⁻¹; HRMS (ESI) calcd for C₂₄H₁₉FN₄O₂Na⁺ [M+Na]⁺ 437.1384, found 437.1385.

(Z)-Ethyl 3-(3-chlorophenyl)-2-(3,3-dicyano-1,10b-dihydropyrrolo[2,1-*a*]phthalazin-2(3*H*)ylidene)propanoate (3ae)

Prepared according to the general procedure as described above in 98%yield (42.2 mg). It was purified by flash chromatography (16% EtOAc/PE) to afford a white solid. mp = 160 – 162 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.81 (s, 1H), 7.51 (td, J = 7.4, 1.5 Hz, 1H), 7.46 – 7.41 (m, 1H), 7.34 – 7.37 (m, 1H), 7.30 – 7.15 (m, 3H), 7.15 – 7.11 (m, 1H), 7.10 – 6.96 (m, 1H), 4.58 – 4.14 (m, 3H), 3.85 (q, J = 15.5 Hz, 2H), 3.35 (dd, J = 16.4, 5.8 Hz, 1H), 3.04 (ddd, J = 16.4, 10.2, 1.3 Hz, 1H), 1.38 (t, J = 7.2 Hz, 4H). ¹³C NMR (75 MHz, CDCl₃) δ 164.2, 146.3, 141.2, 138.3, 134.5, 133.4, 133.1, 132.0, 130.1, 128.8, 128.3, 127.1, 126.2, 125.7, 124.9, 123.2, 112.4, 111.1, 62.5, 59.1, 54.2, 35.5, 33.0, 13.7; IR (film) v_{max} 494, 579, 600, 649, 680, 733, 762, 884, 912, 1032, 1078, 1109, 1144, 1210, 1299, 1370, 1454, 1475, 1509, 1574, 1597, 1713, 2256, 2935, 2984 cm⁻¹; HRMS (ESI) calcd for C₂₄H₁₉ClN₄O₂Na⁺ [M+Na]⁺ 453.1089, found 453.1090.

(Z)-Ethyl 3-(4-chlorophenyl)-2-(3,3-dicyano-1,10b-dihydropyrrolo[2,1-*a*]phthalazin-2(3*H*)ylidene)propanoate (3af)

Prepared according to the general procedure as described above in 95%yield (40.9 mg). It was purified by flash chromatography (16% EtOAc/PE) to afford a white solid. mp = 95 – 96 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.81 (s, 1H), 7.50 (td, *J* = 7.4, 1.5 Hz, 1H), 7.46 – 7.41 (m, 1H), 7.36 (dd, *J* = 7.5, 1.3 Hz, 1H), 7.32 – 7.27 (m, 2H), 7.15 – 7.10 (m, 3H), 4.60 – 4.11 (m, 3H), 3.85 (q, *J* = 15.6 Hz, 2H), 3.34 (dd, *J* = 16.4, 5.8 Hz, 1H), 3.03 (ddd, *J* = 16.4, 10.2, 1.2 Hz, 1H), 1.38 (t, *J* = 7.2 Hz, 3H).¹³C NMR (75 MHz, CDCl₃) δ 164.4, 146.5, 141.1, 134.9, 133.8, 133.3, 132.9, 132.2, 129.3, 129.1, 128.9, 126.3, 125.1, 123.4, 112.6, 111.3, 62.6, 59.3, 54.4, 35.4, 33.1, 13.8; IR (film) v_{max} 704, 737, 762, 804, 865, 883, 912, 1016, 1031, 1108, 1144, 1209, 1235, 1263, 1288, 1369, 1408, 1454, 1491, 1712, 2964 cm⁻¹; HRMS (ESI) calcd for C₂₄H₁₉ClN₄O₂Na⁺ [M+Na]⁺ 453.1089, found 453.1090.

(Z)-Ethyl 3-(2-bromophenyl)-2-(3,3-dicyano-1,10b-dihydropyrrolo[2,1-a]phthalazin-2(3H)-

ylidene)propanoate (3ag)

Prepared according to the general procedure as described above in 96%yield (45.6 mg). It was purified by flash chromatography (16% EtOAc/PE) to afford a white solid. mp = 173 – 175 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.83 (s, 1H), 7.63 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.50 (td, *J* = 7.4, 1.6 Hz, 1H), 7.47 – 7.39 (m, 1H), 7.36 (dd, *J* = 7.5, 1.3 Hz, 1H), 7.29 (td, *J* = 7.5, 1.3 Hz, 1H), 7.16 (td, *J* = 7.7, 1.6 Hz, 1H), 7.09 (d, *J* = 7.5 Hz, 2H), 4.50 – 4.25 (m, 3H), 4.13 – 3.79 (m, 2H), 3.31 (dd, *J* = 16.5, 5.9 Hz, 1H), 2.98 (ddd, *J* = 16.5, 10.2, 1.5 Hz, 1H), 1.36 (t, *J* = 7.2 Hz, 3H).¹³C NMR (75 MHz, CDCl₃) δ 164.4, 146.5, 141.7, 136.0, 133.4, 133.4, 133.1, 132.2, 128.9, 128.7, 128.6, 128.1, 126.3, 125.1, 124.6, 123.4, 112.5, 111.2, 62.6, 59.3, 54.4, 36.4, 33.1, 13.8; IR (film) v_{max} 757, 884, 1029, 1109, 1146, 1209, 1235, 1264, 1300, 1369, 1442, 1469, 1565, 1610, 1713, 2353, 2984 cm⁻¹; HRMS (ESI) calcd for C₂₄H₁₉BrN₄O₂Na⁺ [M+Na]⁺497.0584, found 497.0584.

(Z)-Ethyl 3-(3-bromophenyl)-2-(3,3-dicyano-1,10b-dihydropyrrolo[2,1-*a*]phthalazin-2(3*H*)ylidene)propanoate (3ah)

Prepared according to the general procedure as described above in 98%yield (46.6 mg). It was purified by flash chromatography (16% EtOAc/PE) to afford a white solid. mp = 150 - 152 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.82 (s, 1H), 7.51 (td, J = 7.4, 1.5 Hz, 1H), 7.47 – 7.33 (m, 4H), 7.23 – 7.18 (m, 1H), 7.14 – 7.09 (m, 2H), 4.55 – 4.13 (m, 3H), 3.85 (q, J = 15.4 Hz, 2H), 3.35 (dd, J = 16.4, 5.8 Hz, 1H), 3.05 (ddd, J = 16.4, 10.2, 1.4 Hz, 1H), 1.39 (t, J = 7.2 Hz, 3H).¹³C NMR (75 MHz, CDCl₃) δ 164.3, 146.5, 141.3, 138.7, 133.6, 133.3, 132.2, 131.4, 130.5, 130.2, 129.0, 126.3, 126.3, 125.1, 123.4, 122.9, 112.5, 111.2, 62.7, 59.3, 54.4, 35.6, 33.2, 13.8; IR (film) v_{max} 724, 738, 772, 883, 917, 1032, 1072, 1108, 1142, 1209, 1264, 1298, 1368, 1426, 1454, 1474, 1569, 1594, 1658, 1710, 2353, 2927 cm⁻¹; HRMS (ESI) calcd for C₂₄H₁₉BrN₄O₂Na⁺ [M+Na]⁺497.0584, found 497.0584.

(Z)-Ethyl 3-(4-bromophenyl)-2-(3,3-dicyano-1,10b-dihydropyrrolo[2,1-*a*]phthalazin-2(3*H*)ylidene)propanoate (3ai)

Prepared according to the general procedure as described above in 99%yield (47.1 mg). It was purified by flash chromatography (16% EtOAc/PE) to afford a white solid. mp = 123 – 125 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.81 (s, 1H), 7.50 (td, *J* = 7.5, 1.5 Hz, 1H), 7.47 – 7.40 (m, 3H), 7.37 – 7.34 (m, 1H), 7.13 – 7.07 (m, 3H), 4.50 – 4.22 (m, 3H), 3.83 (q, *J* = 15.7 Hz, 2H), 3.34 (dd, *J* = 16.4, 5.8 Hz, 1H), 3.03 (ddd, *J* = 16.4, 10.2, 1.3 Hz, 1H), 1.38 (t, *J* = 7.2 Hz, 3H).¹³C NMR (75 MHz, CDCl₃) δ 164.4, 146.5, 141.2, 135.5, 133.8, 133.3, 132.2, 132.0, 129.7, 129.0, 126.4, 125.1, 123.4, 120.9, 112.6, 111.3, 62.7, 59.3, 54.4, 35.5, 33.1, 13.9; IR (film) v_{max} 703, 737, 762, 802, 865, 883, 912, 934, 1012, 1031, 1072, 1109, 1145, 1209, 1235, 1264, 1288, 1302, 1369, 1404, 1454, 1488, 1563, 1610, 1658, 1713, 2938, 2983 cm⁻¹; HRMS (ESI) calcd for C₂₄H₁₉BrN₄O₂Na⁺ [M+Na]⁺ 497.0584, found 497.0584.

(Z)-Ethyl 2-(3,3-dicyano-1,10b-dihydropyrrolo[2,1-*a*]phthalazin-2(3*H*)-ylidene)-3-(3-(trifluoromethyl)phenyl)propanoate (3aj)

Prepared according to the general procedure as described above in 96%yield (44.6 mg). It was purified by flash chromatography (16% EtOAc/PE) to afford a white solid. mp = 144 – 145 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.81 (s, 1H), 7.57 – 7.40 (m, 5H), 7.35 – 7.37(m, 2H), 7.13 (d, *J* = 7.2 Hz, 1H), 4.50 – 4.25 (m, 3H), 3.94 (q, *J* = 15.6 Hz, 2H), 3.38 (dd, *J* = 16.4, 5.8 Hz, 1H), 3.06 (ddd, *J* = 16.3, 10.2, 0.9 Hz, 1H), 1.36 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 164.3, 146.5, 141.5, 137.5, 133.5, 133.3, 132.2, 131.2 (q, *J* = 32.2 Hz), 131.0, 129.6, 129.0, 126.4, 125.3 (q, *J* = 3.8 Hz), 125.1, 124.0 (q, *J* = 272.4 Hz), 123.9 (q, *J* = 3.8 Hz), 123.4, 112.5, 111.2, 62.7, 59.3, 54.4, 35.8, 33.2, 13.7; IR (film) v_{max} 573, 701, 739, 765, 791, 883, 1032, 1074, 1120, 1212, 1236, 1266, 1302, 1332, 1370, 1451, 1564, 1710, 2964 cm⁻¹; HRMS (ESI) calcd for C₂₅H₁₉F₃N₄O₂Na⁺ [M+Na]⁺ 487.1352, found 487.1354.

(Z)-Methyl 4-(2-(3,3-dicyano-1,10b-dihydropyrrolo[2,1-*a*]phthalazin-2(3*H*)-ylidene)-3-ethoxy3-oxopropyl)benzoate (3ak)

Prepared according to the general procedure as described above in 99%yield (45.0 mg). It was purified by flash chromatography (16% EtOAc/PE) to afford a white solid. mp = $168 - 170 \,^{\circ}$ C; ¹H NMR (300 MHz, CDCl₃) δ 8.06 – 7.92 (m, 2H), 7.80 (s, 1H), 7.49 (td, *J* = 7.4, 1.6 Hz, 1H), 7.45 – 7.38 (m, 1H), 7.36 – 7.33 (m, 1H), 7.28 – 7.26 (m, 2H), 7.10 (d, *J* = 7.3 Hz, 1H), 4.50 – 4.17 (m, 3H), 4.08 – 3.76 (m, 5H), 3.34 (dd, *J* = 16.4, 5.8 Hz, 1H), 3.03 (ddd, *J* = 16.5, 10.2, 1.2 Hz, 1H), 1.35 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.7, 164.3, 146.5, 141.8, 141.5, 133.5, 133.3, 132.2, 130.2, 129.0, 128.9, 128.0, 126.3, 125.1, 123.4, 112.6, 111.2, 62.6, 59.3, 54.4, 52.1, 36.0, 33.2, 13.8; IR (film) v_{max} 706, 724, 737, 761, 811, 866, 884, 914, 938, 965, 1021, 1109, 1145, 1209, 1235, 1284, 1370, 1416, 1435, 1563, 1611, 1716, 2956, 2986 cm⁻¹; HRMS (ESI) calcd for C₂₆H₂₂N₄O₄Na⁺ [M+Na]⁺477.1533, found 477.1535.

(Z)-Ethyl 2-(3,3-dicyano-1,10b-dihydropyrrolo[2,1-*a*]phthalazin-2(3*H*)-ylidene)-3-(o-tolyl)propanoate (3al)

Prepared according to the general procedure as described above in 99%yield (40.6 mg). It was purified by flash chromatography (16% EtOAc/PE) to afford a white solid. mp = 155 – 156 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.83 (s, 1H), 7.49 (td, *J* = 7.4, 1.6 Hz, 1H), 7.46 – 7.41 (m, 1H), 7.38 – 7.35 (m, 1H), 7.27 – 7.13 (m, 3H), 7.07 (d, *J* = 7.2 Hz, 1H), 7.02 – 6.96 (m, 1H), 4.66 – 4.22 (m, 3H), 4.09 – 3.59 (m, 2H), 3.24 (dd, *J* = 16.4, 5.9 Hz, 1H), 3.00 (ddd, *J* = 16.4, 10.2, 1.5 Hz, 1H), 2.40 (s, 3H), 1.35 (t, *J* = 7.2 Hz, 3H).¹³C NMR (75 MHz, CDCl₃) δ 164.6, 146.4, 140.6, 136.4, 134.6, 134.1, 133.4, 132.2, 130.6, 128.9, 127.0, 126.6, 126.3, 125.1, 123.4, 112.7, 111.4, 62.5, 59.3, 54.4, 33.4, 32.9, 19.8, 13.8; IR (film) v_{max} 724, 755, 801, 882, 906, 932, 1027, 1107, 1144, 1220, 1262, 1299, 1369, 1453, 1491, 1712, 2351, 2963 cm⁻¹; HRMS (ESI) calcd for C₂₅H₂₂N₄O₂Na⁺ [M+Na]⁺433.1635, found 433.1640.

(Z)-Ethyl 2-(3,3-dicyano-1,10b-dihydropyrrolo[2,1-*a*]phthalazin-2(3*H*)-ylidene)-3-(m-

tolyl)propanoate (3am)

Prepared according to the general procedure as described above in 98%yield (40.2 mg). It was purified by flash chromatography (16% EtOAc/PE) to afford a white solid. mp = 135 – 136 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.82 (s, 1H), 7.51 (td, J = 7.5, 1.5 Hz, 1H), 7.46 – 7.41 (m, 1H), 7.37 – 7.34 (m, 1H), 7.23 (t, J = 7.5 Hz, 1H), 7.16 – 6.96 (m, 4H), 4.61 – 4.22 (m, 3H), 3.86 (dd, J = 37.8, 15.6 Hz, 2H), 3.36 (dd, J = 16.4, 5.9 Hz, 1H), 3.05 (ddd, J = 16.5, 10.2, 1.4 Hz, 1H), 2.36 (s, 3H), 1.39 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 164.6, 146.4, 140.6, 138.6, 136.3, 134.3, 133.5, 132.2, 128.9, 128.8, 127.8, 126.3, 125.1, 124.9, 123.4, 112.7, 111.4, 62.5, 59.3, 54.4, 35.9, 33.1, 21.5, 13.9; IR (film) v_{max} 723, 737, 763, 866, 883, 919, 941, 1032, 1072, 1109, 1144, 1209, 1235, 1267, 1298, 1369, 1454, 1490, 1562, 1607, 1658, 1712, 2927, 2983 cm⁻¹; HRMS (ESI) calcd for C₂₅H₂₂N₄O₂Na⁺ [M+Na]⁺433.1635, found 433.1640.

(Z)-Ethyl 2-(3,3-dicyano-1,10b-dihydropyrrolo[2,1-*a*]phthalazin-2(3*H*)-ylidene)-3-(p-tolyl)propanoate (3an)

Prepared according to the general procedure as described above in 98%yield (40.2 mg). It was purified by flash chromatography (16% EtOAc/PE) to afford a white solid. mp = 163 – 165 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.82 (s, 1H), 7.50 (td, *J* = 7.4, 1.5 Hz, 1H), 7.43 (tdd, *J* = 7.5, 1.3, 0.7 Hz, 1H), 7.36 (dd, *J* = 7.5, 1.2 Hz, 1H), 7.17 – 7.08 (m, 5H), 4.59 – 4.27 (m, 3H), 3.85 (dd, *J* = 37.7, 15.4 Hz, 2H), 3.35 (dd, *J* = 16.4, 5.9 Hz, 1H), 3.04 (ddd, *J* = 16.4, 10.2, 1.4 Hz, 1H), 2.34 (s, 3H), 1.39 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 164.7, 146.4, 140.5, 136.6, 134.5, 133.5, 133.3, 132.2, 129.6, 128.9, 127.8, 126.3, 125.1, 123.4, 112.7, 111.4, 62.5, 59.3, 54.4, 35.6, 33.0, 21.0, 13.9; IR (film) v_{max} 479, 578, 598, 666, 724, 737, 762, 792, 865, 883, 911, 934, 1033, 1072, 1109, 1144, 1209, 1234, 1266, 1294, 1369, 1454, 1514, 1562, 1610, 1657, 1712, 2926, 2984 cm⁻¹; HRMS (ESI) calcd for C₂₅H₂₂N₄O₂Na⁺ [M+Na]⁺ 433.1635, found 433.1640.

(Z)-Ethyl 3-(4-(tert-butyl)phenyl)-2-(3,3-dicyano-1,10b-dihydropyrrolo[2,1-*a*]phthalazin-

2(3H)-ylidene)propanoate (3ao)

Prepared according to the general procedure as described above in 92%yield (41.6 mg). It was purified by flash chromatography (16% EtOAc/PE) to afford a yellow semi-solid; ¹H NMR (300 MHz, CDCl₃) δ 7.82 (s, 1H), 7.50 (td, *J* = 7.4, 1.5 Hz, 1H), 7.45 – 7.40 (m, 1H), 7.40 – 7.32 (m, 3H), 7.15 – 7.11 (m, 3H), 4.55 – 4.29 (m, 3H), 3.87 (dd, *J* = 41.3, 15.5 Hz, 2H), 3.37 (dd, *J* = 16.4, 5.9 Hz, 1H), 3.06 (ddd, *J* = 16.4, 10.2, 1.2 Hz, 1H), 1.40 (t, *J* = 7.2 Hz, 3H), 1.34 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 164.7, 149.9, 146.4, 140.5, 134.4, 133.5, 133.3, 132.2, 128.9, 127.6, 126.3, 125.9, 125.1, 123.4, 112.7, 111.4, 62.5, 59.3, 54.4, 35.4, 34.5, 33.1, 31.4, 13.8; IR (film) v_{max} 578, 666, 738, 762, 812, 865, 883, 936, 1032, 1109, 1144, 1208, 1265, 1296, 1368, 1454, 1514, 1714, 2869, 2964 cm⁻¹; HRMS (ESI) calcd for C₂₈H₂₈N₄O₂Na⁺ [M+Na]⁺ 475.2104, found 475.2107.

(Z)-Ethyl 2-(3,3-dicyano-1,10b-dihydropyrrolo[2,1-*a*]phthalazin-2(3*H*)-ylidene)-3-(naphthalen-2-yl)propanoate (3ap)

Prepared according to the general procedure as described above in 97%yield (43.3 mg). It was purified by flash chromatography (16% EtOAc/PE) to afford a yellow solid. mp = 65 – 66 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.85 – 7.82 (m, 4H), 7.63 (s, 1H), 7.53 – 7.45 (m, 3H), 7.44 – 7.39 (m, 1H), 7.37 – 7.32 (m, 2H), 7.09 (d, *J* = 7.4 Hz, 1H), 4.51 – 4.30 (m, 3H), 4.05 (dd, *J* = 41.4, 15.6 Hz, 2H), 3.39 (dd, *J* = 16.4, 5.8 Hz, 1H), 3.06 (ddd, *J* = 16.5, 10.2, 1.4 Hz, 1H), 1.38 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 164.7, 146.4, 141.0, 134.2, 134.0, 133.5, 133.4, 132.4, 132.2, 128.9, 128.8, 127.7, 126.4, 126.4, 126.3, 126.3, 125.9, 125.1, 123.4, 112.7, 111.4, 62.6, 59.4, 54.4, 36.1, 33.1, 13.9; IR (film) v_{max} 475, 738, 800, 817, 862, 883, 918, 939, 1032, 1109, 1144, 1220, 1265, 1290, 1369, 1454, 1508, 1562, 1601, 1711, 2983, 3054 cm⁻¹; HRMS (ESI) calcd for C₂₈H₂₂N₄O₂Na⁺ [M+Na]⁺ 469.1635, found 469.1636.

(Z)-Diethyl 2-(3,3-dicyano-1,10b-dihydropyrrolo[2,1-*a*]phthalazin-2(3*H*)-ylidene)succinate

(3aq)

Prepared according to the general procedure as described above in 94%yield (36.9 mg). It was purified by flash chromatography (16% EtOAc/PE) to afford a white solid. mp = 133 – 135 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.79 (s, 1H), 7.50 (td, *J* = 7.5, 1.4 Hz, 1H), 7.42 (t, *J* = 7.3 Hz, 1H), 7.34 (dd, *J* = 7.5, 1.1 Hz, 1H), 7.13 (d, *J* = 7.4 Hz, 1H), 4.54 – 4.29 (m, 3H), 4.19 (q, *J* = 7.1 Hz, 2H), 3.55 (dt, *J* = 51.7, 9.0 Hz, 2H), 3.33 (dd, *J* = 16.3, 5.8 Hz, 1H), 3.05 (ddd, *J* = 16.2, 10.2, 0.6 Hz, 1H), 1.43 (t, *J* = 7.2 Hz, 3H), 1.27 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 168.5, 163.8, 146.4, 142.5, 133.3, 132.2, 129.0, 128.9, 126.3, 125.1, 123.4, 112.4, 111.0, 62.7, 61.6, 59.1, 54.3, 36.1, 33.2, 14.1, 13.9; IR (film) v_{max} 581, 665, 763, 884, 918, 944, 1032, 1110, 1146, 1196, 1296, 1334, 1370, 1454, 1562, 1732, 2985 cm⁻¹; HRMS (ESI) calcd for C₂₁H₂₀N₄O₄Na⁺ [M+Na]⁺ 415.1377, found 415.1380.

(Z)-Ethyl 2-(7-chloro-3,3-dicyano-1,10b-dihydropyrrolo[2,1-*a*]phthalazin-2(3*H*)-ylidene)3-phenylpropanoate (3ba)

Prepared according to the general procedure as described above in 93%yield (40.1 mg). It was purified by flash chromatography (5% EtOAc/PE) to afford a white solid. mp = 49 – 50°C; ¹H NMR (300 MHz, CDCl₃) δ 7.74 (s, 1H), 7.46 (dd, *J* = 8.1, 1.3 Hz, 1H), 7.39 – 7.37 (m, 1H), 7.36 – 7.31 (m, 2H), 7.31 – 7.24 (m, 2H), 7.24 – 7.18 (m, 2H), 4.63 (dd, *J* = 10.4, 5.6 Hz, 1H), 4.51 – 4.23 (m, 2H), 4.00 – 3.80 (m, 2H), 3.71 (dd, *J* = 17.0, 5.6 Hz, 1H), 3.25 (dd, *J* = 17.0, 10.4 Hz, 1H), 1.39 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 164.7, 145.3, 140.5, 136.5, 134.1, 133.3, 131.1, 131.0, 130.2, 128.9, 128.1, 127.3, 127.0, 125.4, 112.4, 111.4, 62.5, 59.5, 54.6, 36.1, 35.4, 13.8; IR (film) v_{max} 667, 701, 738, 778, 800, 862, 918, 938, 963, 1030, 1095, 1131, 1153, 1197, 1223, 1239, 1266, 1299, 1369, 1452, 1495, 1558, 1603, 1658, 1712, 2356, 2985, 3030 cm⁻¹; HRMS (ESI) calcd for C₂₄H₁₉ClN₄O₂Na⁺ [M+Na]⁺ 453.1089, found 453.1090.

(Z)-Ethyl 2-(10-chloro-3,3-dicyano-1,10b-dihydropyrrolo[2,1-*a*]phthalazin-2(3*H*)-ylidene)-

Prepared according to the general procedure as described above in 94%yield (40.5 mg). It was purified by flash chromatography (5% EtOAc/PE) to afford a white solid. mp = $157 - 158 \,^{\circ}$ C; ¹H NMR (300 MHz, CDCl₃) δ 8.16 (s, 1H), 7.47 – 7.38 (m, 2H), 7.37 – 7.30 (m, 2H), 7.29 – 7.23 (m, 1H), 7.21 – 7.18 (m, 2H), 7.05 – 7.00 (m, 1H), 4.55 – 4.21 (m, 3H), 3.89 (q, *J* = 15.8 Hz, 2H), 3.36 (dd, *J* = 16.4, 5.9 Hz, 1H), 3.04 (ddd, *J* = 16.4, 10.2, 1.3 Hz, 1H), 1.36 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 164.6, 142.9, 140.3, 136.3, 135.5, 134.5, 133.0, 132.5, 130.0, 129.0, 127.9, 127.0, 122.7, 122.1, 112.5, 111.2, 62.6, 59.2, 54.3, 35.9, 33.0, 13.8; IR (film) v_{max} 599, 683, 703, 745, 783, 878, 926, 969, 1031, 1077, 1136, 1157, 1208, 1230, 1288, 1369, 1446, 1495, 1555, 1601, 1657, 1712, 2984, 3030 cm⁻¹; HRMS (ESI) calcd for C₂₄H₁₉ClN₄O₂Na⁺ [M+Na]⁺ 453.1089, found 453.1090.

(Z)-Ethyl 2-(8,9-dichloro-3,3-dicyano-1,10b-dihydropyrrolo[2,1-*a*]phthalazin-2(3*H*)-ylidene)-3-phenylpropanoate (3da)

Prepared according to the general procedure as described above in 95%yield (44.2 mg). It was purified by flash chromatography (16% EtOAc/PE) to afford a white solid. mp = $173 - 175 \,^{\circ}$ C; ¹H NMR (300 MHz, CDCl₃) δ 7.75 (s, 1H), 7.42 (s, 1H), 7.40 – 7.31 (m, 2H), 7.30 – 7.25 (m, 2H), 7.20 – 7.18 (m, 3H), 4.50 – 4.27 (m, 3H), 3.89 (dd, J = 43.5, 15.5 Hz, 2H), 3.33 (dd, J = 16.3, 5.9 Hz, 1H), 3.03 (ddd, J = 16.4, 10.2, 1.2 Hz, 1H), 1.37 (t, J = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 164.5, 144.0, 139.7, 136.2, 136.0, 134.8, 133.3, 132.8, 129.0, 127.9, 127.1, 125.8, 124.7, 112.4, 111.1, 62.7, 59.1, 53.8, 35.9, 32.8, 13.8; IR (film) v_{max} 583, 619, 647, 673, 700, 734, 792, 910, 974, 1031, 1078, 1126, 1209, 1237, 1303, 1370, 1453, 1478, 1495, 1543, 1604, 1712, 2255, 2984, 3031 cm⁻¹; HRMS (ESI) calcd for C₂₄H₁₈Cl₂N₄O₂Na⁺ [M+Na]⁺ 487.0699, found 487.0701.

(Z)-Ethyl 2-(3,3-dicyano-8,9-dimethyl-1,10b-dihydropyrrolo[2,1-*a*]phthalazin-2(3*H*)-ylidene)-3-phenylpropanoate (3ea)

Prepared according to the general procedure as described above in 98%yield (41.6 mg). It was purified by flash chromatography (16% EtOAc/PE) to afford a white solid. mp = $151 - 153 \,^{\circ}$ C; ¹H NMR (300 MHz, CDCl₃) δ 7.75 (s, 1H), 7.37 – 7.31 (m, 2H), 7.29 – 7.24 (m, 2H), 7.23 – 7.18 (m, 2H), 7.12 (s, 1H), 6.88 (s, 1H), 4.49 – 4.24 (m, 3H), 3.90 (dd, *J* = 40.3, 15.7 Hz, 2H), 3.33 (dd, *J* = 16.4, 5.8 Hz, 1H), 3.02 (ddd, *J* = 16.4, 10.2, 1.4 Hz, 1H), 2.32 (s, 3H), 2.30 (s, 3H), 1.37 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 164.6, 146.6, 141.5, 141.1, 137.3, 136.5, 134.1, 131.1, 128.9, 127.9, 127.5, 127.0, 124.6, 123.0, 112.8, 111.4, 62.4, 59.4, 54.3, 35.9, 33.2, 20.1, 19.5, 13.8; IR (film) v_{max} 701, 739, 804, 866, 908, 1030, 1072, 1094, 1138, 1214, 1264, 1304, 1369, 1453, 1495, 1553, 1603, 1622, 1657, 1713, 2980, 3028 cm⁻¹; HRMS (ESI) calcd for C₂₆H₂₄N₄O₂Na⁺ [M+Na]⁺ 447.1791, found 447.1791.

(Z)-Ethyl 2-(3,3-dicyano-1,12b-dihydrobenzo[g]pyrrolo[2,1-*a*]phthalazin-2(3*H*)-ylidene)-3-phenylpropanoate (3fa)

Prepared according to the general procedure as described above in 99%yield (44.2 mg). It was purified by flash chromatography (16% EtOAc/PE) to afford a red solid. mp = 83 – 85 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.91 – 7.79 (m, 3H), 7.65 (s, 1H), 7.62 – 7.52 (m, 2H), 7.42 – 7.33 (m, 3H), 7.32 – 7.28 (m, 1H), 7.26 – 7.23 (m, 2H), 4.54 – 4.25 (m, 3H), 3.92 (dd, *J* = 47.9, 15.8 Hz, 2H), 3.38 (dd, *J* = 16.4, 5.9 Hz, 1H), 3.02 (ddd, *J* = 16.5, 10.3, 1.4 Hz, 1H), 1.39 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 164.7, 146.4, 140.7, 136.5, 134.6, 134.2, 132.7, 130.7, 129.1, 129.0, 128.3, 128.0, 127.8, 127.3, 127.0, 126.8, 122.6, 122.5, 112.9, 111.4, 62.5, 59.6, 55.0, 36.0, 33.1, 13.9; IR (film) v_{max} 477, 580, 616, 639, 701, 751, 806, 867, 911, 1031, 1075, 1108, 1137, 1221, 1302, 1328, 1368, 1453, 1495, 1566, 1604, 1657, 1712, 2931, 2983, 3029 cm⁻¹; HRMS (ESI) calcd for C₂₈H₂₂N₄O₂Na⁺ [M+Na]⁺ 469.1635, found 469.1638.

(Z)-Ethyl 2-(3,3-dicyano-1,10b-dihydropyrrolo[2,1-*a*]isoquinolin-2(3*H*)-ylidene)-3-

phenylpropanoate (3ga)

Prepared according to the general procedure as described above in 88%yield (34.8 mg). It was purified by flash chromatography (5% EtOAc/PE) to afford a white solid. mp = 112 – 114 °C; ¹H NMR (300 MHz, DMSO) δ 7.33 – 7.26 (m, 2H), 7.24 – 7.16 (m, 5H), 7.14 – 7.08 (m, 2H), 6.87 (d, *J* = 7.6 Hz, 1H), 6.02 (d, *J* = 7.6 Hz, 1H), 4.54 (dd, *J* = 9.8, 5.5 Hz, 1H), 4.27 – 4.10 (m, 2H), 3.84 (s, 2H), 3.72 (dd, *J* = 17.1, 5.7 Hz, 1H), 3.17 (dd, *J* = 17.2, 10.0 Hz, 1H), 1.15 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (75 MHz, DMSO) δ 165.0, 144.1, 137.5, 132.8, 131.5, 130.8, 129.6, 128.9, 128.5, 127.6, 126.9, 124.7, 124.6, 112.8, 112.2, 110.1, 62.1, 57.5, 56.4, 36.1, 35.1, 13.9; IR (film) v_{max} 566, 636, 702, 737, 771, 865, 939, 1031, 1077, 1098, 1210, 1257, 1299, 1368, 1408, 1456, 1494, 1566, 1622, 1710, 2930, 2983, 3028 cm⁻¹; HRMS (ESI) calcd for C₂₅H₂₀N₃O₂⁻ [M-H]⁻ 394.1561, found 394.1562.

(Z)-Ethyl

2-(7,7-dicyano-4a,5-dihydropyrrolo[1,2-b]pyridazin-6(7H)-ylidene)-3-

phenylpropanoate (5)

Prepared according to the general procedure as described above in 78%yield (27.0 mg). It was purified by flash chromatography (9% EtOAc/Petroleum ether containing 1% Et₃N) to afford a white solid. mp = 110 – 111 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.36 – 7.28 (m, 3H), 7.28 – 7.22 (m, 1H), 7.19 – 7.12 (m, 2H), 6.18 (dt, *J* = 9.6, 1.9 Hz, 1H), 6.01 (dt, *J* = 9.6, 2.7 Hz, 1H), 4.49 – 4.26 (m, 2H), 4.01 (ddt, *J* = 10.3, 5.8, 2.3 Hz, 1H), 3.81 (dd, *J* = 35.3, 15.4 Hz, 2H),3.02 (dd, *J* = 16.5, 5.8 Hz, 1H), 2.81 (ddd, *J* = 16.5, 10.1, 1.4 Hz, 1H), 1.36 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 164.5, 143.9, 140.6, 136.4, 134.3, 130.4, 128.9, 127.9, 127.0, 120.5, 112.5, 111.2, 62.5, 58.6, 51.6, 35.8, 33.9, 13.8; IR (film) v_{max} 511, 568, 649, 700, 738, 833, 914, 1026, 1091, 1152, 1234, 1294, 1369, 1396, 1454, 1495, 1542, 1603, 1712, 2255, 2984, 3030 cm⁻¹; HRMS (ESI) calcd for C₂₀H₁₈N₄O₂Na⁺ [M+Na]⁺ 369.1322, found 369.1323.

Ethyl 2-(7-cyanopyrrolo[1,2-b]pyridazin-6-yl)-3-phenylpropanoate (6)

Prepared according to the general procedure as described above in 19%yield (6.1 mg). It was purified by flash chromatography (9% EtOAc/Petroleum ether containing 1% Et₃N) to afford a white solid. mp = 90 – 92 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.24 (dd, J = 4.5, 1.7 Hz, 1H), 7.77 (dd, J = 9.1, 1.7 Hz, 1H), 7.31 – 7.25 (m, 1H), 7.25 – 7.23 (m, 1H), 7.23 – 7.15 (m, 3H), 6.82 (dd, J = 9.1, 4.5 Hz, 1H), 6.62 (s, 1H), 4.32 – 4.20 (m, 1H), 4.20 – 4.03 (m, 2H), 3.48 (dd, J = 13.7, 8.4 Hz, 1H), 3.18 (dd, J = 13.7, 7.4 Hz, 1H), 1.18 (t, J = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 171.8, 143.1, 137.7, 133.6, 129.7, 128.7, 128.3, 126.9, 126.6, 114.2, 111.7, 100.1, 100.0, 61.1, 45.8, 39.5, 13.9; IR (film) v_{max} 513, 700, 749, 800, 1029, 1096, 1152, 1215, 1295, 1324, 1370, 1443, 1496, 1539, 1604, 1732, 2216, 2928, 2962, 3029 cm⁻¹; HRMS (ESI) calcd for C₁₉H₁₇N₃O₂Na⁺ [M+Na]⁺ 342.1213, found 342.1211.

Transformations of the product 3ai

Under argon atmosphere, the compound **3ai** (47.5 mg, 0.1 mmol), Cs_2CO_3 (0.2 mmol), $Pd(Ph_3P)_4$ (0.005 mmol) and butyldi-1-adamantylphosphine (0.006 mmol) were added sequentially to a dry tube. After adding DME (1.0 mL) to the reaction system, the reaction mixture was stirred at 80 °C for 14 h. Then, the reaction mixture was subjected to flash column chromatography (9% EtOAc/PE) to afford the product **7** in 78% yield (34.9 mg).

Ethyl 9-(4-bromophenyl)-8-cyano-12,12a-dihydroazepino[2,1-a]phthalazine-10-carboxylate (7)

A white solid. mp = $151 - 153 \,^{\circ}$ C; ¹H NMR (300 MHz, DMSO) δ 8.93 (s, 1H), 8.32 (d, $J = 8.0 \,\text{Hz}$, 1H), 8.06 (d, $J = 7.6 \,\text{Hz}$, 1H), 7.93 (t, $J = 7.7 \,\text{Hz}$, 1H), 7.73 (t, $J = 7.6 \,\text{Hz}$, 1H), 7.48 – 7.38 (m, 2H), 7.34 (s, 1H), 7.23 – 7.12 (m, 2H), 4.17 (t, $J = 7.9 \,\text{Hz}$, 1H), 4.14 – 3.99 (m, 2H), 3.42 (dd, $J = 13.6, 7.5 \,\text{Hz}$, 1H), 3.19 (dd, $J = 13.7, 8.4 \,\text{Hz}$, 1H), 1.11 (t, $J = 7.1 \,\text{Hz}$, 3H); ¹³C NMR (75 MHz, DMSO) δ 171.5, 146.5, 137.9, 134.0, 132.3, 131.4, 131.4, 129.2, 129.0, 127.3, 126.1, 122.8, 120.7, 119.9, 112.3, 100.3, 99.8, 61.2, 45.5, 37.4, 14.2; IR (film) v_{max} 584, 760, 806, 1012, 1072, 1098, 1153, 1204, 1329, 1431, 1489, 1535, 1624, 1732, 2216, 2982 cm⁻¹; HRMS (ESI) calcd for C₂₃H₁₈BrN₃O₂Na⁺ [M+Na]⁺ 472.0457, found 472.0456.

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 f1 (pps)

180 130 100 90 f1 (ppm) 170 160 150 140 1 2 0 110 70 60 10 8.0 5 0 4 0 3 0 2 0

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 f1 (ppm)

80 70 150 140 100 90 fl (ppm) 3 0

2D NMR COSY of 3ca

2D NMR HSQC of 3ca

2D NMR HMBC of 3ca

X-Ray Crystallography Data

Crystallographic data for **3aa**, **3ga**, **6**, **7** and **3aa**' has been deposited with the Cambridge Crystallographic Data Centre as deposition number CCDC 1455366, 1455369, 1455370, 1455373 and 1465124. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

X-Ray Crystallography Data of 3aa

Table 1. Crystal data and structure refinement for 3aa.

Identification code	3aa	
Empirical formula	$C_{24}H_{20}N_4O_2$	
Formula weight	396.44	
Temperature	173.1500 K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 1 n 1	
Unit cell dimensions	a = 11.285(2) Å	a= 90°
	b = 14.466(3) Å	b=112.20(3)°
	c = 13.528(3) Å	$g = 90^{\circ}$
Volume	2044.9(8) Å ³	
Z	4	
Density (calculated)	1.288 Mg/m ³	
Absorption coefficient	0.084 mm^{-1}	
F(000)	832	
Crystal size	0.53 x 0.14 x 0.12 m	m ³
Theta range for data collection	2.012 to 27.489°	
Index ranges	-13<=h<=14, -18<=k	<=18, -17<=l<=17
Reflections collected	24275	
Independent reflections	8978 [R(int) = 0.041	9]
	S47	

Completeness to theta = 26.000°	99.8 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.0000 and 0.7145
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	8978 / 2 / 543
Goodness-of-fit on F ²	1.037
Final R indices [I>2sigma(I)]	R1 = 0.0456, wR2 = 0.1012
R indices (all data)	R1 = 0.0477, wR2 = 0.1027
Absolute structure parameter	0.7(5)
Extinction coefficient	n/a
Largest diff. peak and hole	0.328 and -0.343 e.Å ⁻³

Table 2. Atomic coordinates $(x10^4)$ and equivalent isotropic displacement parameters $(Å^2 x \ 10^3)$ for **3aa**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	х	у	Ζ	U(eq)
01	-3751(2)	-2177(2)	-2583(2)	44(1)
02	-5679(2)	-2866(2)	-3183(2)	43(1)
N1	-2737(2)	1173(2)	-2808(2)	36(1)
N2	-3865(2)	682(2)	-3377(2)	29(1)
N3	-3710(3)	-410(2)	-1168(2)	40(1)
N4	-1719(3)	-978(2)	-3337(2)	48(1)
C1	-5658(3)	2107(2)	-5676(2)	43(1)
C2	-5790(3)	3051(2)	-5857(3)	47(1)
C3	-4919(3)	3661(2)	-5170(3)	47(1)
C4	-3903(3)	3324(2)	-4294(2)	44(1)
C5	-3770(3)	2383(2)	-4102(2)	36(1)
C6	-4653(3)	1768(2)	-4802(2)	33(1)
C7	-4370(3)	763(2)	-4548(2)	31(1)
C8	-2727(3)	1988(2)	-3178(2)	38(1)
C9	-5465(3)	69(2)	-4855(2)	31(1)
C10	-4985(2)	-684(2)	-4019(2)	28(1)
C11	-3774(2)	-301(2)	-3118(2)	29(1)
C12	-3738(3)	-405(2)	-2016(2)	31(1)
C13	-2604(3)	-718(2)	-3208(2)	35(1)
C14	-5468(3)	-1528(2)	-4060(2)	31(1)
C15	-4853(3)	-2217(2)	-3186(2)	35(1)
C16	-5186(4)	-3647(2)	-2460(3)	52(1)

C17	-4724(5)	-4363(3)	-3000(4)	74(1)
C18	-6592(3)	-1876(2)	-5012(2)	32(1)
C19	-6200(2)	-2659(2)	-5570(2)	28(1)
C20	-5052(3)	-2633(2)	-5709(2)	8(1)
C21	-4715(4)	-3327(3)	-6262(3)	53(1)
C22	-5542(4)	-4059(2)	-6676(3)	56(1)
C23	-6668(4)	-4102(2)	-6525(3)	55(1)
C24	-7009(3)	-3408(2)	-5979(2)	42(1)
03	-1574(2)	-3812(2)	-6176(2)	53(1)
O4	-1052(3)	-2938(2)	-7302(2)	73(1)
N5	1443(2)	-4349(2)	-2340(2)	35(1)
N6	1288(2)	-3581(2)	-3005(2)	32(1)
N7	1053(3)	-4924(2)	-5093(3)	56(1)
N8	-1840(3)	-4200(2)	-3829(3)	57(1)
C25	2256(3)	-2511(2)	-1594(2)	36(1)
C26	2788(3)	-1648(2)	-1261(2)	45(1)
C27	3784(4)	-1556(3)	-272(3)	54(1)
C28	4234(4)	-2321(3)	378(3)	52(1)
C29	3720(3)	-3182(2)	41(2)	45(1)
C30	2729(3)	-3292(2)	-959(2)	36(1)
C31	2162(3)	-4185(2)	-1360(2)	38(1)
C32	1112(3)	-2681(2)	-2601(2)	33(1)
C33	905(3)	-2070(2)	-3570(2)	30(1)
C34	199(3)	-2699(2)	-4506(2)	30(1)
C35	270(3)	-3690(2)	-4060(2)	31(1)
C36	683(3)	-4394(2)	-4653(2)	38(1)
C37	-958(3)	-3976(2)	-3974(2)	36(1)
C38	-330(3)	-2453(2)	-5532(2)	33(1)
C39	-1047(3)	-3149(2)	-6357(2)	38(1)
C40	-1873(8)	-3503(3)	-8205(3)	121(3)
C41	-2518(6)	-2982(4)	-9068(5)	121(3)
C42	-270(3)	-1481(2)	-5919(2)	37(1)
C43	-1562(3)	-1091(2)	-6596(2)	30(1)
C44	-2555(3)	-1074(2)	-6225(2)	41(1)
C45	-3758(3)	-745(2)	-6870(3)	46(1)
C46	-3981(3)	-430(2)	-7880(2)	41(1)
C47	-3010(3)	-442(2)	-8260(2)	39(1)
C48	-1815(3)	-773(2)	-7624(2)	36(1)
UTU	1013(3)	(13(2)	1027(2)	50(1)

O1-C15	1.205(4)
O2-C15	1.325(4)
O2-C16	1.460(4)
N1-N2	1.406(3)
N1-C8	1.283(4)
N2-C7	1.472(3)
N2-C11	1.459(3)
N3-C12	1.135(4)
N4-C13	1.140(4)
C1-H1	0.9300
C1-C2	1.385(4)
C1-C6	1.383(4)
С2-Н2	0.9300
C2-C3	1.384(5)
С3-Н3	0.9300
C3-C4	1.390(5)
C4-H4	0.9300
C4-C5	1.384(4)
C5-C6	1.403(4)
C5-C8	1.470(4)
C6-C7	1.501(4)
С7-Н7	0.9800
С7-С9	1.523(4)
С8-Н8	0.9300
С9-Н9А	0.9700
С9-Н9В	0.9700
C9-C10	1.515(4)
C10-C11	1.550(3)
C10-C14	1.330(4)
C11-C12	1.484(4)
C11-C13	1.498(4)
C14-C15	1.500(4)
C14-C18	1.512(4)
C16-H16A	0.9700
C16-H16B	0.9700
C16-C17	1.471(6)

Table 3. Bond lengths [Å] and angles [°] for 3aa.

C17-H17A	0.9600
C17-H17B	0.9600
C17-H17C	0.9600
C18-H18A	0.9700
C18-H18B	0.9700
C18-C19	1.517(4)
C19-C20	1.378(4)
C19-C24	1.390(4)
С20-Н20	0.9300
C20-C21	1.388(4)
C21-H21	0.9300
C21-C22	1.382(6)
С22-Н22	0.9300
C22-C23	1.362(6)
С23-Н23	0.9300
C23-C24	1.384(5)
C24-H24	0.9300
O3-C39	1.202(4)
O4-C39	1.312(4)
O4-C40	1.471(5)
N5-N6	1.398(3)
N5-C31	1.288(4)
N6-C32	1.455(3)
N6-C35	1.464(3)
N7-C36	1.142(4)
N8-C37	1.133(4)
C25-C26	1.385(4)
C25-C30	1.397(4)
C25-C32	1.501(4)
С26-Н26	0.9300
C26-C27	1.391(5)
С27-Н27	0.9300
C27-C28	1.384(5)
C28-H28	0.9300
C28-C29	1.378(5)
С29-Н29	0.9300
C29-C30	1.401(4)
C30-C31	1.454(4)

0.9300
0.9800
1.525(4)
0.9700
0.9700
1.518(4)
1.546(3)
1.335(4)
1.476(4)
1.493(4)
1.494(4)
1.510(4)
0.9700
0.9700
1.349(7)
0.9600
0.9600
0.9600
0.9700
0.9700
1.508(4)
1.390(4)
1.387(4)
0.9300
1.391(5)
0.9300
1.371(5)
0.9300
1.376(5)
0.9300
1.382(4)
0.9300
117.4(3)
113.0(2)
116.8(2)
113.2(2)
107.37(19)

С2-С1-Н1	120.0
С6-С1-Н1	120.0
C6-C1-C2	120.0(3)
С1-С2-Н2	119.7
C3-C2-C1	120.5(3)
С3-С2-Н2	119.7
С2-С3-Н3	120.1
C2-C3-C4	119.8(3)
С4-С3-Н3	120.1
С3-С4-Н4	120.0
C5-C4-C3	120.1(3)
С5-С4-Н4	120.0
C4-C5-C6	119.9(3)
C4-C5-C8	122.5(3)
C6-C5-C8	117.7(3)
C1-C6-C5	119.8(3)
C1-C6-C7	125.1(3)
C5-C6-C7	115.1(2)
N2-C7-C6	106.6(2)
N2-C7-H7	109.7
N2-C7-C9	100.7(2)
С6-С7-Н7	109.7
C6-C7-C9	119.7(2)
С9-С7-Н7	109.7
N1-C8-C5	124.5(3)
N1-C8-H8	117.8
С5-С8-Н8	117.8
С7-С9-Н9А	110.9
С7-С9-Н9В	110.9
Н9А-С9-Н9В	108.9
C10-C9-C7	104.2(2)
С10-С9-Н9А	110.9
С10-С9-Н9В	110.9
C9-C10-C11	106.9(2)
C14-C10-C9	127.2(2)
C14-C10-C11	125.9(2)
N2-C11-C10	101.4(2)
N2-C11-C12	108.2(2)

C22-C21-H21	120.3
С21-С22-Н22	120.0
C23-C22-C21	120.0(3)
С23-С22-Н22	120.0
С22-С23-Н23	119.7
C22-C23-C24	120.6(3)
С24-С23-Н23	119.7
С19-С24-Н24	119.8
C23-C24-C19	120.3(3)
С23-С24-Н24	119.8
C39-O4-C40	116.7(3)
C31-N5-N6	113.1(2)
N5-N6-C32	118.1(2)
N5-N6-C35	113.8(2)
C32-N6-C35	107.2(2)
C26-C25-C30	120.7(3)
C26-C25-C32	124.1(3)
C30-C25-C32	115.1(2)
С25-С26-Н26	120.3
C25-C26-C27	119.5(3)
С27-С26-Н26	120.3
С26-С27-Н27	119.9
C28-C27-C26	120.2(3)
С28-С27-Н27	119.9
С27-С28-Н28	119.8
C29-C28-C27	120.4(3)
С29-С28-Н28	119.8
С28-С29-Н29	119.9
C28-C29-C30	120.3(3)
С30-С29-Н29	119.9
C25-C30-C29	118.9(3)
C25-C30-C31	118.5(3)
C29-C30-C31	122.6(3)
N5-C31-C30	124.4(3)
N5-C31-H31	117.8
С30-С31-Н31	117.8
N6-C32-C25	107.2(2)
N6-C32-H32	109.6

N6-C32-C33	101.2(2)
С25-С32-Н32	109.6
C25-C32-C33	119.0(2)
С33-С32-Н32	109.6
С32-С33-Н33А	111.1
С32-С33-Н33В	111.1
Н33А-С33-Н33В	109.1
C34-C33-C32	103.4(2)
С34-С33-Н33А	111.1
С34-С33-Н33В	111.1
C33-C34-C35	107.3(2)
C38-C34-C33	126.5(2)
C38-C34-C35	126.1(2)
N6-C35-C34	100.7(2)
N6-C35-C36	108.2(2)
N6-C35-C37	111.3(2)
C36-C35-C34	114.1(2)
C36-C35-C37	110.2(2)
C37-C35-C34	112.0(2)
N7-C36-C35	177.2(4)
N8-C37-C35	174.9(3)
C34-C38-C39	120.0(2)
C34-C38-C42	123.2(3)
C39-C38-C42	116.8(2)
O3-C39-O4	124.3(3)
O3-C39-C38	123.8(3)
O4-C39-C38	111.9(3)
O4-C40-H40A	109.2
O4-C40-H40B	109.2
H40A-C40-H40B	107.9
C41-C40-O4	111.9(4)
C41-C40-H40A	109.2
C41-C40-H40B	109.2
C40-C41-H41A	109.5
C40-C41-H41B	109.5
C40-C41-H41C	109.5
H41A-C41-H41B	109.5
H41A-C41-H41C	109.5

H41B-C41-H41C	109.5
C38-C42-H42A	108.9
C38-C42-H42B	108.9
H42A-C42-H42B	107.7
C43-C42-C38	113.6(2)
C43-C42-H42A	108.9
C43-C42-H42B	108.9
C44-C43-C42	120.9(2)
C48-C43-C42	121.2(3)
C48-C43-C44	117.8(3)
C43-C44-H44	119.7
C43-C44-C45	120.6(3)
C45-C44-H44	119.7
С44-С45-Н45	119.8
C46-C45-C44	120.4(3)
С46-С45-Н45	119.8
С45-С46-Н46	120.1
C45-C46-C47	119.7(3)
С47-С46-Н46	120.1
С46-С47-Н47	120.0
C46-C47-C48	119.9(3)
C48-C47-H47	120.0
C43-C48-H48	119.3
C47-C48-C43	121.5(3)
C47-C48-H48	119.3

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (Å²x 10³) for **3**aa. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2 a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}]$

	U11	U ²²	U33	U23	U13	U12	
01	41(1)	40(1)	41(1)	3(1)	3(1)	4(1)	
O2	46(1)	46(1)	38(1)	6(1)	16(1)	-2(1)	
N1	37(1)	38(1)	26(1)	-4(1)	6(1)	-6(1)	
				S57			

N2	30(1)	31(1)	22(1)	-1(1)	5(1)	-1(1)
N3	44(2)	43(1)	29(1)	-1(1)	10(1)	2(1)
N4	36(2)	59(2)	49(2)	0(1)	16(1)	10(1)
C1	45(2)	42(2)	33(2)	2(1)	5(1)	2(1)
C2	50(2)	47(2)	39(2)	11(1)	10(1)	7(2)
C3	58(2)	40(2)	46(2)	8(1)	21(2)	6(2)
C4	55(2)	38(2)	37(2)	1(1)	16(1)	-5(1)
C5	38(2)	38(2)	29(1)	1(1)	12(1)	-3(1)
C6	37(2)	36(1)	24(1)	1(1)	12(1)	1(1)
C7	30(1)	37(1)	23(1)	-2(1)	7(1)	0(1)
C8	42(2)	38(2)	29(1)	-3(1)	8(1)	-9(1)
C9	28(1)	34(1)	26(1)	-2(1)	5(1)	2(1)
C10	27(1)	33(1)	22(1)	-4(1)	6(1)	4(1)
C11	27(1)	33(1)	23(1)	-3(1)	6(1)	4(1)
C12	31(1)	31(1)	26(1)	-2(1)	6(1)	3(1)
C13	31(2)	41(2)	26(1)	-2(1)	4(1)	1(1)
C14	29(1)	34(1)	27(1)	-4(1)	8(1)	4(1)
C15	40(2)	34(1)	28(1)	-4(1)	11(1)	3(1)
C16	60(2)	50(2)	45(2)	14(2)	21(2)	1(2)
C17	83(3)	53(2)	93(3)	21(2)	43(3)	18(2)
C18	27(1)	35(1)	31(1)	-4(1)	7(1)	-2(1)
C19	29(1)	29(1)	23(1)	2(1)	5(1)	-1(1)
C20	34(2)	41(2)	37(2)	-4(1)	12(1)	-1(1)
C21	48(2)	66(2)	46(2)	-7(2)	18(2)	19(2)
C22	72(3)	44(2)	40(2)	-8(1)	8(2)	26(2)
C23	72(3)	28(2)	49(2)	-8(1)	4(2)	-2(2)
C24	46(2)	35(2)	39(2)	-1(1)	11(1)	-9(1)
O3	60(2)	46(1)	40(1)	-3(1)	5(1)	-23(1)
O4	141(3)	40(1)	33(1)	-3(1)	26(2)	-20(2)
N5	44(2)	26(1)	34(1)	7(1)	13(1)	2(1)
N6	36(1)	25(1)	30(1)	3(1)	7(1)	1(1)
N7	80(2)	37(2)	53(2)	-4(1)	28(2)	5(1)
N8	48(2)	63(2)	58(2)	12(2)	18(2)	-9(1)
C25	38(2)	36(2)	32(1)	0(1)	11(1)	2(1)
C26	54(2)	36(2)	36(2)	-2(1)	6(2)	-4(1)
C27	56(2)	47(2)	46(2)	-9(2)	6(2)	-12(2)
C28	47(2)	58(2)	36(2)	-6(2)	0(1)	-4(2)
C29	45(2)	48(2)	34(2)	3(1)	7(1)	9(1)

C30	38(2)	36(2)	30(1)	1(1)	10(1)	4(1)
C31	47(2)	32(1)	31(1)	7(1)	10(1)	8(1)
C32	35(2)	29(1)	34(1)	1(1)	13(1)	2(1)
C33	34(2)	23(1)	31(1)	1(1)	11(1)	-1(1)
C34	30(1)	25(1)	33(1)	2(1)	9(1)	-1(1)
C35	33(2)	24(1)	31(1)	3(1)	7(1)	-2(1)
C36	49(2)	26(1)	34(2)	4(1)	11(1)	-3(1)
C37	39(2)	33(1)	34(1)	3(1)	11(1)	-6(1)
C38	32(2)	30(1)	31(1)	5(1)	6(1)	-1(1)
C39	41(2)	32(2)	34(2)	5(1)	4(1)	2(1)
C40	251(8)	45(2)	34(2)	-12(2)	18(3)	-30(3)
C41	93(4)	77(3)	118(5)	-33(3)	-45(3)	6(3)
C42	40(2)	29(1)	34(2)	6(1)	6(1)	-4(1)
C43	35(2)	24(1)	27(1)	0(1)	8(1)	-4(1)
C44	53(2)	38(2)	33(2)	4(1)	18(1)	3(1)
C45	48(2)	43(2)	52(2)	-1(1)	24(2)	4(1)
C46	39(2)	32(1)	41(2)	-4(1)	2(1)	5(1)
C47	47(2)	36(2)	28(1)	2(1)	7(1)	4(1)
C48	40(2)	34(1)	31(1)	4(1)	13(1)	-2(1)

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for **3aa**.

	х	У	Z	U(eq)	
Ш1	6245	1702	6142	51	
H2	-6468	3277	-6142 -6444	56	
Н3	-5014	4294	-5295	57	
H4	-3311	3732	-3835	52	
H7	-3723	554	-4818	37	
H8	-2011	2355	-2838	46	
H9A	-6235	353	-4836	37	
H9B	-5646	-176	-5564	37	
H16A	-5857	-3898	-2256	62	
H16B	-4490	-3444	-1819	62	
H17A	-5393	-4522	-3666	111	

H17B	-4478	-4903	-2554	111
H17C	-3998	-4133	-3130	111
H18A	-6941	-1373	-5512	38
H18B	-7257	-2091	-4777	38
H20	-4494	-2142	-5428	45
H21	-3939	-3299	-6354	64
H22	-5329	-4522	-7056	67
H23	-7212	-4602	-6792	66
H24	-7783	-3443	-5886	50
H26	2481	-1134	-1695	54
H27	4149	-979	-46	65
H28	4887	-2252	1045	62
H29	4032	-3694	479	53
H31	2329	-4671	-877	46
H32	335	-2686	-2441	39
H33A	395	-1531	-3567	36
H33B	1715	-1868	-3591	36
H40A	-1348	-3948	-8391	145
H40B	-2479	-3843	-7993	145
H41A	-2824	-3368	-9691	181
H41B	-1959	-2518	-9156	181
H41C	-3231	-2691	-8971	181
H42A	125	-1082	-5306	44
H42B	270	-1479	-6332	44
H44	-2413	-1284	-5540	49
H45	-4416	-740	-6614	55
H46	-4786	-207	-8306	49
H47	-3156	-229	-8945	47
H48	-1167	-784	-7890	43

Table 6. Torsion angles [°] for **3aa**.

N1-N2-C7-C6	-60.4(3)
N1-N2-C7-C9	174.0(2)
N1-N2-C11-C10	-167.6(2)
N1-N2-C11-C12	70.1(3)
N1-N2-C11-C13	-51.3(3)

N2-N1-C8-C5	-0.4(4)
N2-C7-C9-C10	-34.0(3)
C1-C2-C3-C4	0.1(5)
C1-C6-C7-N2	-145.1(3)
C1-C6-C7-C9	-32.0(4)
C2-C1-C6-C5	-0.1(5)
C2-C1-C6-C7	-176.9(3)
C2-C3-C4-C5	-0.7(5)
C3-C4-C5-C6	0.8(5)
C3-C4-C5-C8	-179.0(3)
C4-C5-C6-C1	-0.5(4)
C4-C5-C6-C7	176.7(3)
C4-C5-C8-N1	161.0(3)
C5-C6-C7-N2	37.9(3)
C5-C6-C7-C9	151.0(3)
C6-C1-C2-C3	0.2(5)
C6-C5-C8-N1	-18.7(5)
C6-C7-C9-C10	-150.3(2)
C7-N2-C11-C10	-37.2(3)
C7-N2-C11-C12	-159.5(2)
C7-N2-C11-C13	79.1(3)
C7-C9-C10-C11	12.7(3)
C7-C9-C10-C14	-164.8(3)
C8-N1-N2-C7	41.9(3)
C8-N1-N2-C11	167.4(2)
C8-C5-C6-C1	179.3(3)
C8-C5-C6-C7	-3.5(4)
C9-C10-C11-N2	13.9(3)
C9-C10-C11-C12	130.8(2)
C9-C10-C11-C13	-103.5(2)
C9-C10-C14-C15	177.5(3)
C9-C10-C14-C18	2.1(4)
C10-C14-C15-O1	-22.1(4)
C10-C14-C15-O2	158.6(3)
C10-C14-C18-C19	113.9(3)
C11-N2-C7-C6	171.2(2)
C11-N2-C7-C9	45.6(3)
C11-C10-C14-C15	0.5(4)

C11-C10-C14-C18	-174.9(2)
C14-C10-C11-N2	-168.6(3)
C14-C10-C11-C12	-51.7(4)
C14-C10-C11-C13	74.0(3)
C14-C18-C19-C20	-40.4(4)
C14-C18-C19-C24	141.5(3)
C15-O2-C16-C17	-87.6(4)
C15-C14-C18-C19	-61.6(3)
C16-O2-C15-O1	-6.3(4)
C16-O2-C15-C14	172.9(2)
C18-C14-C15-O1	153.5(3)
C18-C14-C15-O2	-25.8(3)
C18-C19-C20-C21	-177.0(3)
C18-C19-C24-C23	177.4(3)
C19-C20-C21-C22	-0.3(5)
C20-C19-C24-C23	-0.8(4)
C20-C21-C22-C23	-1.0(5)
C21-C22-C23-C24	1.3(5)
C22-C23-C24-C19	-0.4(5)
C24-C19-C20-C21	1.2(4)
N5-N6-C32-C25	57.8(3)
N5-N6-C32-C33	-176.8(2)
N5-N6-C35-C34	171.1(2)
N5-N6-C35-C36	-68.9(3)
N5-N6-C35-C37	52.3(3)
N6-N5-C31-C30	2.0(4)
N6-C32-C33-C34	33.9(3)
C25-C26-C27-C28	-0.5(6)
C25-C30-C31-N5	15.2(5)
C25-C32-C33-C34	150.9(2)

C26-C25-C30-C29	2.5(5)
C26-C25-C30-C31	-178.2(3)
C26-C25-C32-N6	146.6(3)
C26-C25-C32-C33	32.8(4)
C26-C27-C28-C29	1.5(6)
C27-C28-C29-C30	-0.5(6)
C28-C29-C30-C25	-1.5(5)
C28-C29-C30-C31	179.2(3)
C29-C30-C31-N5	-165.5(3)
C30-C25-C26-C27	-1.5(5)
C30-C25-C32-N6	-36.9(3)
C30-C25-C32-C33	-150.7(3)
C31-N5-N6-C32	-40.7(4)
C31-N5-N6-C35	-167.7(3)
C32-N6-C35-C34	38.7(3)
C32-N6-C35-C36	158.6(2)
C32-N6-C35-C37	-80.2(3)
C32-C25-C26-C27	174.8(3)
C32-C25-C30-C29	-174.2(3)
C32-C25-C30-C31	5.1(4)
C32-C33-C34-C35	-11.4(3)
C32-C33-C34-C38	171.7(3)
C33-C34-C35-N6	-15.3(3)
C33-C34-C35-C36	-131.0(3)
C33-C34-C35-C37	103.0(3)
C33-C34-C38-C39	-177.2(3)
C33-C34-C38-C42	1.5(5)
C34-C38-C39-O3	27.0(5)
C34-C38-C39-O4	-154.2(3)
C34-C38-C42-C43	-127.1(3)

C35-N6-C32-C25	-172.1(2)
C35-N6-C32-C33	-46.7(3)
C35-C34-C38-C39	6.5(5)
C35-C34-C38-C42	-174.9(3)
C38-C34-C35-N6	161.6(3)
C38-C34-C35-C36	46.0(4)
C38-C34-C35-C37	-80.0(4)
C38-C42-C43-C44	54.0(4)
C38-C42-C43-C48	-123.2(3)
C39-O4-C40-C41	137.1(6)
C39-C38-C42-C43	51.6(4)
C40-O4-C39-O3	6.7(6)
C40-O4-C39-C38	-172.0(4)
C42-C38-C39-O3	-151.7(3)
C42-C38-C39-O4	27.0(4)
C42-C43-C44-C45	-177.5(3)
C42-C43-C48-C47	177.9(3)
C43-C44-C45-C46	-0.3(5)
C44-C43-C48-C47	0.6(4)
C44-C45-C46-C47	0.4(5)
C45-C46-C47-C48	0.0(5)
C46-C47-C48-C43	-0.5(4)
C48-C43-C44-C45	-0.2(4)

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for **3aa** [Å and °].

D-H...A d(D-H) d(H...A) d(D...A) <(DHA)

X-Ray Crystallography Data of 3ga

Table 1. Crystal data and structure refinem	ent for 3ga .		
Identification code	3ga		
Empirical formula	$C_{25} H_{21} N_3 O2$		
Formula weight	395.45		
Temperature	173.1500 K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P 1 21/c 1		
Unit cell dimensions	a = 16.156(3) Å	a= 90°	
	b = 10.118(2) Å	b=105.14(3)°	
	c = 25.816(5) Å	$g = 90^{\circ}$	
Volume	4073.8(15) Å ³		
Z	4		
Density (calculated)	1.288 Mg/m^3		
Absorption coefficient	0.083 mm ⁻¹		
F(000)	1660		
Crystal size	$0.21 \text{ x } 0.19 \text{ x } 0.07 \text{ mm}^3$		
Theta range for data collection	1.306 to 27.480°		
Index ranges	-20<=h<=20, -13<=k<=13, -33<=l<=33		
Reflections collected	28360		
Independent reflections	9274 [R(int) = 0.0542]		
Completeness to theta = 26.000°	99.8 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	1.0000 and 0.7639		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	9274 / 0 / 565		

Goodness-of-fit on F ²	1.162
Final R indices [I>2sigma(I)]	R1 = 0.0704, wR2 = 0.1499
R indices (all data)	R1 = 0.0835, wR2 = 0.1583
Extinction coefficient	n/a
Largest diff. peak and hole	0.421 and -0.210 e.Å ⁻³

Table 2. Atomic coordinates $(x10^4)$ and equivalent isotropic displacement parameters $(Å^2 x \ 10^3)$ for **3ga**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	У	Z	U(eq)
01	1760(1)	2624(1)	1537(1)	46(1)
O2	1951(1)	492(1)	1372(1)	38(1)
N1	-556(1)	4018(2)	1740(1)	52(1)
N2	1429(1)	4348(2)	2487(1)	51(1)
N3	393(1)	4442(2)	732(1)	52(1)
C1	-2747(1)	5148(2)	2173(1)	43(1)
C2	-3280(2)	4201(3)	2298(1)	48(1)
C3	-3083(1)	2879(2)	2284(1)	42(1)
C4	-2355(1)	2490(2)	2137(1)	37(1)
C5	-1820(1)	3434(2)	2006(1)	36(1)
C6	-2010(1)	4782(2)	2026(1)	35(1)
C7	-1428(1)	5743(2)	1893(1)	40(1)
C8	-731(1)	5361(2)	1757(1)	38(1)
C10	-733(1)	1768(2)	1781(1)	33(1)
C11	118(1)	2008(2)	1661(1)	33(1)
C12	240(1)	3532(2)	1651(1)	36(1)
C13	962(1)	3970(2)	2106(1)	37(1)
C14	351(1)	4022(2)	1132(1)	36(1)
C15	673(1)	1084(2)	1592(1)	32(1)
C16	1505(1)	1493(2)	1499(1)	34(1)
C17	2792(1)	862(2)	1304(1)	42(1)
C18	3195(2)	-347(2)	1147(1)	55(1)
C19	472(1)	-372(2)	1629(1)	33(1)
C20	-174(1)	-913(2)	1140(1)	32(1)
C21	-979(1)	-1311(2)	1172(1)	39(1)
C22	-1576(2)	-1818(2)	732(1)	49(1)
C23	-1374(2)	-1947(2)	250(1)	54(1)

C24	-574(2)	-1558(3)	209(1)	56(1)
C25	25(2)	-1038(2)	650(1)	46(1)
C9	-897(3)	3063(4)	2010(2)	26(1)
O3	3465(1)	3799(1)	1028(1)	50(1)
O4	3177(1)	5930(1)	1141(1)	35(1)
N4	5684(1)	2704(2)	584(1)	33(1)
N5	3635(1)	2189(2)	12(1)	50(1)
N6	5005(1)	1820(2)	1673(1)	49(1)
C26	7994(1)	1962(2)	223(1)	39(1)
C27	8488(1)	3012(2)	130(1)	41(1)
C28	8265(1)	4292(2)	215(1)	38(1)
C29	7552(1)	4531(2)	406(1)	34(1)
C30	7062(1)	3490(2)	507(1)	30(1)
C31	7269(1)	2184(2)	407(1)	32(1)
C32	6703(1)	1118(2)	482(1)	38(1)
C33	5942(1)	1385(2)	561(1)	38(1)
C34	6358(1)	3672(2)	784(1)	32(1)
C35	5863(1)	4952(2)	709(1)	31(1)
C36	5014(1)	4583(2)	806(1)	30(1)
C37	4940(1)	3056(2)	768(1)	31(1)
C38	4950(1)	2408(2)	1289(1)	34(1)
C39	4168(1)	2590(2)	356(1)	35(1)
C40	4446(1)	5444(2)	899(1)	31(1)
C41	3652(1)	4954(2)	1025(1)	35(1)
C42	2384(1)	5510(2)	1261(1)	40(1)
C43	1922(1)	6736(2)	1355(1)	40(1)
C44	4596(1)	6917(2)	870(1)	33(1)
C45	5233(1)	7507(2)	1352(1)	32(1)
C46	5926(1)	8228(2)	1281(1)	39(1)
C47	6510(2)	8804(2)	1709(1)	49(1)
C48	6408(2)	8671(3)	2219(1)	54(1)
C49	5729(2)	7960(3)	2297(1)	56(1)
C50	5143(2)	7379(2)	1869(1)	45(1)
C9A	-1172(3)	3096(4)	1682(3)	31(1)

O1-C16	1.211(2)
O2-C16	1.331(2)
O2-C17	1.465(2)
N1-C8	1.391(3)
N1-C12	1.449(3)
N1-C9	1.386(4)
N1-C9A	1.344(4)
N2-C13	1.138(3)
N3-C14	1.135(3)
C1-C2	1.382(3)
C1-C6	1.392(3)
C2-C3	1.378(3)
C3-C4	1.384(3)
C4-C5	1.387(3)
C5-C6	1.402(3)
C5-C9	1.537(4)
C5-C9A	1.540(5)
C6-C7	1.454(3)
C7-C8	1.322(3)
C10-C11	1.507(3)
C10-C9	1.490(4)
C10-C9A	1.510(4)
C11-C12	1.555(3)
C11-C15	1.339(3)
C12-C13	1.491(3)
C12-C14	1.482(3)
C15-C16	1.486(3)
C15-C19	1.517(3)
C17-C18	1.490(3)
C19-C20	1.514(3)
C20-C21	1.385(3)
C20-C25	1.390(3)
C21-C22	1.382(3)
C22-C23	1.372(4)
C23-C24	1.381(4)
C24-C25	1.390(3)

Table 3. Bond lengths [Å] and angles [°] for 3ga.

O3-C41	1.207(2)
O4-C41	1.333(2)
O4-C42	1.457(2)
N4-C33	1.404(2)
N4-C34	1.456(2)
N4-C37	1.447(3)
N5-C39	1.138(3)
N6-C38	1.139(3)
C26-C27	1.387(3)
C26-C31	1.391(3)
C27-C28	1.377(3)
C28-C29	1.387(3)
C29-C30	1.382(3)
C30-C31	1.403(3)
C30-C34	1.505(3)
C31-C32	1.460(3)
C32-C33	1.326(3)
C34-C35	1.507(3)
C35-C36	1.504(3)
C36-C37	1.551(3)
C36-C40	1.331(3)
C37-C38	1.493(3)
C37-C39	1.488(3)
C40-C41	1.489(3)
C40-C44	1.515(3)
C42-C43	1.500(3)
C44-C45	1.515(3)
C45-C46	1.387(3)
C45-C50	1.386(3)
C46-C47	1.381(3)
C47-C48	1.374(4)
C48-C49	1.370(4)
C49-C50	1.385(3)
C16-O2-C17	114.45(15)
C8-N1-C12	122.23(17)
C9-N1-C8	123.6(2)
C9-N1-C12	109.2(2)

C9A-N1-C8	122.0(2)
C9A-N1-C12	114.1(2)
C2-C1-C6	120.6(2)
C3-C2-C1	120.4(2)
C2-C3-C4	120.1(2)
C3-C4-C5	119.9(2)
C4-C5-C6	120.4(2)
C4-C5-C9	119.7(2)
C4-C5-C9A	122.3(2)
C6-C5-C9	117.2(2)
C6-C5-C9A	114.9(2)
C1-C6-C5	118.6(2)
C1-C6-C7	122.57(19)
C5-C6-C7	118.83(19)
C8-C7-C6	120.96(19)
C7-C8-N1	119.3(2)
C11-C10-C9A	103.6(2)
C9-C10-C11	101.9(2)
C10-C11-C12	106.83(16)
C15-C11-C10	126.37(18)
C15-C11-C12	126.77(18)
N1-C12-C11	102.32(15)
N1-C12-C13	108.50(19)
N1-C12-C14	110.56(18)
C13-C12-C11	110.98(17)
C14-C12-C11	113.10(18)
C14-C12-C13	110.99(17)
N2-C13-C12	170.7(2)
N3-C14-C12	175.9(2)
C11-C15-C16	119.52(17)
C11-C15-C19	120.58(18)
C16-C15-C19	119.86(17)
O1-C16-O2	123.05(19)
O1-C16-C15	123.49(18)
O2-C16-C15	113.46(16)
O2-C17-C18	107.98(17)
C20-C19-C15	114.26(16)
C21-C20-C19	120.50(19)

C21-C20-C25	118.2(2)
C25-C20-C19	121.28(19)
C22-C21-C20	121.5(2)
C23-C22-C21	120.0(2)
C22-C23-C24	119.4(2)
C23-C24-C25	120.8(2)
C20-C25-C24	120.1(2)
N1-C9-C5	109.9(3)
N1-C9-C10	106.2(3)
C10-C9-C5	119.0(3)
C41-O4-C42	114.93(15)
C33-N4-C34	116.84(16)
C33-N4-C37	121.95(16)
C37-N4-C34	109.04(15)
C27-C26-C31	120.6(2)
C28-C27-C26	120.4(2)
C27-C28-C29	119.8(2)
C30-C29-C28	120.24(19)
C29-C30-C31	120.42(18)
C29-C30-C34	122.49(17)
C31-C30-C34	116.71(17)
C26-C31-C30	118.55(19)
C26-C31-C32	122.53(18)
C30-C31-C32	118.89(18)
C33-C32-C31	120.53(18)
C32-C33-N4	119.89(19)
N4-C34-C30	109.70(16)
N4-C34-C35	102.10(15)
C30-C34-C35	119.08(17)
C36-C35-C34	104.03(15)
C35-C36-C37	107.13(16)
C40-C36-C35	124.70(17)
C40-C36-C37	128.17(18)
N4-C37-C36	102.09(15)
N4-C37-C38	111.93(16)
N4-C37-C39	107.43(17)
C38-C37-C36	113.40(17)
C39-C37-C36	113.43(16)

C39-C37-C38	108.36(16)
N6-C38-C37	173.3(2)
N5-C39-C37	173.0(2)
C36-C40-C41	119.68(17)
C36-C40-C44	120.51(18)
C41-C40-C44	119.81(17)
O3-C41-O4	123.78(19)
O3-C41-C40	123.75(18)
O4-C41-C40	112.47(16)
O4-C42-C43	107.18(16)
C45-C44-C40	115.48(17)
C46-C45-C44	119.89(18)
C50-C45-C44	122.30(19)
C50-C45-C46	117.8(2)
C47-C46-C45	121.6(2)
C48-C47-C46	119.8(2)
C49-C48-C47	119.6(2)
C48-C49-C50	120.7(2)
C49-C50-C45	120.6(2)
N1-C9A-C5	112.0(3)
N1-C9A-C10	107.3(3)
C10-C9A-C5	117.5(3)

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (Å $^2x 10^3$) for **3ga**. The anisotropic displacement

	U11	U22	U33	U23	U13	U12	
01	36(1)	27(1)	81(1)	-8(1)	26(1)	-6(1)	
O2	27(1)	29(1)	60(1)	-6(1)	18(1)	-2(1)	
N1	42(1)	22(1)	106(2)	7(1)	43(1)	4(1)	
N2	62(1)	38(1)	52(1)	-7(1)	13(1)	4(1)	
N3	39(1)	63(1)	51(1)	4(1)	5(1)	-9(1)	
C1	42(1)	46(1)	42(1)	-1(1)	12(1)	14(1)	
				S72			

factor exponent takes the form: $-2p^2[h^2 a^{*2}U^{11} + ... + 2hka^{*}b^{*}U^{12}]$
C2	38(1)	65(2)	45(1)	6(1)	19(1)	13(1)
C3	33(1)	55(1)	41(1)	10(1)	11(1)	3(1)
C4	31(1)	40(1)	41(1)	5(1)	10(1)	3(1)
C5	32(1)	35(1)	46(1)	0(1)	16(1)	3(1)
C6	35(1)	34(1)	36(1)	0(1)	8(1)	6(1)
C7	43(1)	27(1)	52(1)	-1(1)	16(1)	5(1)
C8	38(1)	24(1)	53(1)	2(1)	14(1)	2(1)
C10	30(1)	26(1)	47(1)	4(1)	17(1)	1(1)
C11	28(1)	26(1)	46(1)	0(1)	12(1)	-3(1)
C12	30(1)	24(1)	59(1)	0(1)	18(1)	-1(1)
C13	43(1)	24(1)	47(1)	1(1)	19(1)	2(1)
C14	29(1)	31(1)	49(1)	-1(1)	7(1)	-6(1)
C15	26(1)	27(1)	44(1)	-3(1)	9(1)	-3(1)
C16	28(1)	27(1)	46(1)	-2(1)	10(1)	0(1)
C17	29(1)	37(1)	64(1)	-6(1)	22(1)	-5(1)
C18	40(1)	45(1)	89(2)	-15(1)	31(1)	-4(1)
C19	30(1)	24(1)	46(1)	0(1)	11(1)	0(1)
C20	35(1)	19(1)	43(1)	0(1)	11(1)	2(1)
C21	38(1)	28(1)	52(1)	0(1)	11(1)	-6(1)
C22	41(1)	36(1)	65(2)	0(1)	4(1)	-9(1)
C23	54(2)	39(1)	57(2)	-8(1)	-8(1)	3(1)
C24	67(2)	56(2)	43(1)	-8(1)	12(1)	14(1)
C25	42(1)	45(1)	52(1)	-2(1)	17(1)	5(1)
C9	24(2)	28(2)	23(3)	-1(2)	3(2)	-1(1)
03	41(1)	29(1)	91(1)	3(1)	34(1)	-1(1)
O4	26(1)	31(1)	53(1)	1(1)	17(1)	0(1)
N4	30(1)	24(1)	48(1)	-2(1)	16(1)	-2(1)
N5	44(1)	41(1)	57(1)	0(1)	2(1)	-7(1)
N6	53(1)	49(1)	49(1)	7(1)	18(1)	-1(1)
C26	35(1)	41(1)	40(1)	-10(1)	10(1)	6(1)
C27	30(1)	55(1)	39(1)	-7(1)	12(1)	3(1)
C28	29(1)	44(1)	41(1)	0(1)	10(1)	-2(1)
C29	28(1)	32(1)	40(1)	0(1)	10(1)	-1(1)
C30	26(1)	32(1)	31(1)	-2(1)	8(1)	2(1)
C31	32(1)	31(1)	33(1)	-3(1)	6(1)	2(1)
C32	40(1)	25(1)	51(1)	-3(1)	14(1)	4(1)
C33	39(1)	24(1)	51(1)	-2(1)	14(1)	-1(1)
C34	31(1)	28(1)	40(1)	-2(1)	12(1)	-2(1)

C35	27(1)	26(1)	39(1)	-1(1)	10(1)	-3(1)
C36	28(1)	25(1)	37(1)	2(1)	9(1)	-3(1)
C37	27(1)	26(1)	42(1)	1(1)	12(1)	-2(1)
C38	32(1)	29(1)	44(1)	-1(1)	13(1)	-2(1)
C39	34(1)	27(1)	46(1)	3(1)	11(1)	-3(1)
C40	25(1)	27(1)	42(1)	-1(1)	11(1)	-1(1)
C41	27(1)	30(1)	50(1)	2(1)	13(1)	0(1)
C42	30(1)	37(1)	57(1)	5(1)	21(1)	-2(1)
C43	36(1)	40(1)	49(1)	-5(1)	19(1)	-2(1)
C44	28(1)	25(1)	47(1)	2(1)	14(1)	1(1)
C45	33(1)	25(1)	41(1)	-1(1)	14(1)	2(1)
C46	44(1)	32(1)	41(1)	-1(1)	13(1)	-6(1)
C47	48(1)	42(1)	55(1)	-2(1)	8(1)	-12(1)
C48	60(2)	50(1)	48(1)	-10(1)	3(1)	-2(1)
C49	66(2)	67(2)	40(1)	-2(1)	21(1)	7(1)
C50	47(1)	47(1)	47(1)	1(1)	22(1)	1(1)
C9A	25(2)	25(2)	40(4)	2(2)	4(2)	1(2)

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for **3ga**.

	Х	у	Z	U(eq)	
H1	-2883	6039	2186	52	
H2	-3773	4457	2393	57	
Н3	-3441	2247	2373	51	
H4	-2224	1597	2126	45	
H7	-1549	6640	1903	48	
H8	-318(18)	5970(30)	1683(11)	64(8)	
H10	-723(19)	1210(30)	1996(12)	73(10)	
H17A	3149	1218	1636	50	
H17B	2729	1531	1027	50	
H18A	2851	-669	810	83	
H18B	3237	-1015	1417	83	
H18C	3759	-137	1114	83	
H19A	1000	-871	1683	40	

H19B	254	-509	1941	40
H21	-1121	-1235	1497	47
H22	-2114	-2072	763	59
H23	-1772	-2294	-46	65
H24	-435	-1645	-117	67
H25	560	-773	616	55
Н9	-558	3078	2385	31
H26	8148	1102	162	46
H27	8973	2851	10	49
H28	8591	4994	145	45
H29	7403	5394	466	40
H32	6878	244	475	46
H33	5481(15)	700(20)	593(9)	48(7)
H34	6597	3523	1169	39
H35A	6154	5611	965	37
H35B	5788	5293	349	37
H42A	2509	4953	1578	47
H42B	2033	5012	963	47
H43A	1788	7267	1036	61
H43B	2281	7231	1646	61
H43C	1402	6495	1445	61
H44A	4795	7093	553	39
H44B	4052	7366	824	39
H46	5998	8326	938	46
H47	6971	9280	1653	59
H48	6796	9062	2508	65
H49	5661	7866	2642	68
H50	4686	6899	1928	54
H9A	-1492	3110	1303	37

Table 6. Torsion angles [°] for **3ga**.

C1-C2-C3-C4	-0.8(3)
C1-C6-C7-C8	179.7(2)
C2-C1-C6-C5	0.2(3)
C2-C1-C6-C7	-179.7(2)
C2-C3-C4-C5	0.3(3)

0.5(3)
161.6(3)
-161.0(3)
-0.7(3)
179.2(2)
164.7(3)
42.0(5)
-161.0(3)
-36.1(5)
-0.2(3)
0.5(3)
-33.6(4)
-156.3(3)
36.6(5)
161.5(3)
0.3(4)
-179.4(2)
63.2(3)
-58.7(3)
36.2(5)
166.2(2)
-39.5(6)
-169.9(3)
-2.5(2)
113.07(19)
-121.44(19)
-177.4(2)
0.4(3)
34.2(4)
158.7(3)
-23.8(4)
-151.0(3)
8.2(3)
-172.32(19)
76.4(3)
-173.3(2)
-168.5(2)
-38.5(4)

C12-N1-C9A-C5	154.7(3)
C12-N1-C9A-C10	24.4(5)
C12-C11-C15-C16	0.5(3)
C12-C11-C15-C19	178.3(2)
C15-C11-C12-N1	179.3(2)
C15-C11-C12-C13	-65.1(3)
C15-C11-C12-C14	60.4(3)
C15-C19-C20-C21	-112.2(2)
C15-C19-C20-C25	68.5(2)
C16-O2-C17-C18	-178.2(2)
C16-C15-C19-C20	-105.9(2)
C17-O2-C16-O1	2.3(3)
C17-O2-C16-C15	-177.20(18)
C19-C15-C16-O1	-169.6(2)
C19-C15-C16-O2	9.9(3)
C19-C20-C21-C22	-179.44(19)
C19-C20-C25-C24	178.9(2)
C20-C21-C22-C23	0.5(3)
C21-C20-C25-C24	-0.4(3)
C21-C22-C23-C24	-0.5(4)
C22-C23-C24-C25	-0.1(4)
C23-C24-C25-C20	0.5(4)
C25-C20-C21-C22	-0.1(3)
C9-N1-C8-C7	-21.1(4)
C9-N1-C12-C11	24.9(3)
C9-N1-C12-C13	-92.5(3)
C9-N1-C12-C14	145.6(3)
C9-N1-C9A-C5	65.0(5)
C9-N1-C9A-C10	-65.4(4)
C9-C5-C6-C1	-162.3(3)
C9-C5-C6-C7	17.6(4)
C9-C5-C9A-N1	-65.5(5)
C9-C5-C9A-C10	59.4(4)
C9-C10-C11-C12	-18.3(3)
C9-C10-C11-C15	159.9(3)
C9-C10-C9A-N1	67.0(4)
C9-C10-C9A-C5	-60.2(5)
N4-C34-C35-C36	33.7(2)

C26-C27-C28-C29	1.4(3)
C26-C31-C32-C33	-167.4(2)
C27-C26-C31-C30	-1.4(3)
C27-C26-C31-C32	176.5(2)
C27-C28-C29-C30	-0.5(3)
C28-C29-C30-C31	-1.3(3)
C28-C29-C30-C34	171.36(19)
C29-C30-C31-C26	2.2(3)
C29-C30-C31-C32	-175.73(19)
C29-C30-C34-N4	148.48(18)
C29-C30-C34-C35	31.5(3)
C30-C31-C32-C33	10.5(3)
C30-C34-C35-C36	154.65(17)
C31-C26-C27-C28	-0.4(3)
C31-C30-C34-N4	-38.6(2)
C31-C30-C34-C35	-155.56(18)
C31-C32-C33-N4	-1.4(3)
C33-N4-C34-C30	48.3(2)
C33-N4-C34-C35	175.52(18)
C33-N4-C37-C36	171.23(18)
C33-N4-C37-C38	49.6(3)
C33-N4-C37-C39	-69.2(2)
C34-N4-C33-C32	-29.8(3)
C34-N4-C37-C36	30.1(2)
C34-N4-C37-C38	-91.47(19)
C34-N4-C37-C39	149.70(16)
C34-C30-C31-C26	-170.86(18)
C34-C30-C31-C32	11.2(3)

C34-C35-C36-C37	-16.4(2)
C34-C35-C36-C40	164.4(2)
C35-C36-C37-N4	-7.4(2)
C35-C36-C37-C38	113.23(19)
C35-C36-C37-C39	-122.61(18)
C35-C36-C40-C41	-175.95(18)
C35-C36-C40-C44	4.9(3)
C36-C40-C41-O3	-3.2(3)
C36-C40-C41-O4	176.02(18)
C36-C40-C44-C45	-77.8(3)
C37-N4-C33-C32	-168.1(2)
C37-N4-C34-C30	-168.36(16)
C37-N4-C34-C35	-41.2(2)
C37-C36-C40-C41	5.0(3)
C37-C36-C40-C44	-174.13(19)
C40-C36-C37-N4	171.8(2)
C40-C36-C37-C38	-67.6(3)
C40-C36-C37-C39	56.6(3)
C40-C44-C45-C46	125.5(2)
C40-C44-C45-C50	-55.9(3)
C41-O4-C42-C43	-177.45(18)
C41-C40-C44-C45	103.1(2)
C42-O4-C41-O3	-1.6(3)
C42-O4-C41-C40	179.16(17)
C44-C40-C41-O3	176.0(2)
C44-C40-C41-O4	-4.8(3)
C44-C45-C46-C47	178.7(2)
C44-C45-C50-C49	-178.5(2)

C45-C46-C47-C48	-0.3(4)
C46-C45-C50-C49	0.1(3)
C46-C47-C48-C49	0.5(4)
C47-C48-C49-C50	-0.3(4)
C48-C49-C50-C45	0.0(4)
C50-C45-C46-C47	0.0(3)
C9A-N1-C8-C7	22.1(5)
C9A-N1-C12-C11	-13.7(4)
C9A-N1-C12-C13	-131.1(4)
C9A-N1-C12-C14	107.0(4)
C9A-N1-C9-C5	-63.5(4)
C9A-N1-C9-C10	66.5(4)
C9A-C5-C6-C1	162.1(3)
C9A-C5-C6-C7	-18.0(4)
C9A-C5-C9-N1	60.4(4)
C9A-C5-C9-C10	-62.3(4)
C9A-C10-C11-C12	15.3(3)
C9A-C10-C11-C15	-166.5(3)
C9A-C10-C9-N1	-62.6(4)
C9A-C10-C9-C5	61.9(5)

Table 7. Hydrogen bonds for mx3423 [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	

X-Ray Crystallography Data of 6

T 1 1

Table 1. Crystal data and structure re	efinement for 6		
Identification code	6		
Empirical formula	C19 H17 N3 O2		
Formula weight	319.35		
Temperature	173.1500 K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P -1		
Unit cell dimensions	a = 8.427(5) Å	a= 83.90(3)°	
	b = 8.87(5) Å	b= 89.32(3)°	
	c = 11.531(7) Å	g = 71.399(19)°	
Volume	812(5) Å ³		
Z	2		
Density (calculated)	1.307 Mg/m ³		
Absorption coefficient	0.087 mm^{-1}		
F(000)	336		
Crystal size	0.29 x 0.21 x 0.06 m	m ³	
Theta range for data collection	2.858 to 27.452°		
Index ranges -10<=h<=10, -11<=k<=11, -14		K<=11, - 14<=1<=14	
Reflections collected	6873		
Independent reflections	3614 [R(int) = 0.061	9]	
Completeness to theta = 26.000°	98.0 %		
Absorption correction	Semi-empirical from	n equivalents	
Max. and min. transmission	1.0000 and 0.4197		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	3614 / 0 / 218		
Goodness-of-fit on F ²	1.112		
Final R indices [I>2sigma(I)]	R1 = 0.0943, wR2 =	0.2530	
R indices (all data)	R1 = 0.1078, wR2 = \$81	0.2690	

Extinction coefficient
$$n/a$$
Largest diff. peak and hole 0.384 and -0.369 e.Å⁻³

	Х	У	Z	U(eq)
01	5890(3)	6364(2)	6824(2)	49(1)
O2	6000(3)	5314(2)	8701(2)	41(1)
N1	10236(3)	1011(2)	6263(2)	29(1)
N2	11539(3)	-380(3)	6337(2)	35(1)
N3	8528(4)	-696(3)	8654(3)	60(1)
C1	12694(3)	-404(3)	5565(3)	37(1)
C2	12650(3)	866(3)	4697(2)	38(1)
C3	11329(3)	2240(3)	4639(2)	35(1)
C4	10050(3)	2354(3)	5461(2)	31(1)
C5	8559(3)	3506(3)	5710(2)	31(1)
C6	7835(3)	2868(3)	6662(2)	30(1)
C7	8900(3)	1313(3)	6991(2)	30(1)
C8	8737(4)	173(3)	7904(3)	39(1)
С9	6215(3)	3566(3)	7259(2)	30(1)
C10	4696(3)	3575(4)	6521(2)	38(1)
C11	3159(3)	3726(3)	7253(2)	33(1)
C12	2905(3)	2341(3)	7799(2)	36(1)
C13	1556(4)	2436(4)	8519(3)	41(1)
C14	443(3)	3900(4)	8712(3)	43(1)
C15	684(4)	5277(4)	8180(3)	44(1)
C16	2034(3)	5193(3)	7446(2)	37(1)
C17	6011(3)	5251(3)	7550(2)	34(1)
C18	5829(4)	6833(4)	9130(3)	54(1)
C19	4027(5)	7835(4)	9170(3)	56(1)

Table 2. Atomic coordinates $(x10^4)$ and equivalent isotropic displacement parameters $(Å^2x \ 10^3)$ for **6**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

O1-C17	1.203(5)
O2-C17	1.333(4)
O2-C18	1.448(8)
N1-N2	1.360(5)
N1-C4	1.396(6)
N1-C7	1.370(3)
N2-C1	1.308(4)
N3-C8	1.147(5)
C1-H1	0.9300
C1-C2	1.417(6)
С2-Н2	0.9300
C2-C3	1.359(6)
С3-Н3	0.9300
C3-C4	1.413(4)
C4-C5	1.392(5)
С5-Н5	0.9300
C5-C6	1.403(4)
C6-C7	1.399(7)
C6-C9	1.500(4)
C7-C8	1.417(5)
С9-Н9	0.9800
C9-C10	1.544(4)
C9-C17	1.522(9)
C10-H10A	0.9700
C10-H10B	0.9700
C10-C11	1.515(4)
C11-C12	1.396(7)
C11-C16	1.383(7)
С12-Н12	0.9300
C12-C13	1.386(4)
С13-Н13	0.9300
C13-C14	1.376(7)
C14-H14	0.9300
C14-C15	1.380(7)
С15-Н15	0.9300
C15-C16	1.397(4)

Table 3. Bond lengths [Å] and angles [°] for ${\bf 6}.$

C16-H16	0.9300
C18-H18A	0.9700
C18-H18B	0.9700
C18-C19	1.498(5)
C19-H19A	0.9600
C19-H19B	0.9600
С19-Н19С	0.9600
C17-O2-C18	118.4(3)
N2-N1-C4	126.2(3)
N2-N1-C7	124.5(2)
C7-N1-C4	109.2(2)
C1-N2-N1	114.4(3)
N2-C1-H1	117.5
N2-C1-C2	125.1(3)
С2-С1-Н1	117.5
С1-С2-Н2	120.4
C3-C2-C1	119.3(3)
С3-С2-Н2	120.4
С2-С3-Н3	120.8
C2-C3-C4	118.5(3)
С4-С3-Н3	120.8
N1-C4-C3	116.5(2)
C5-C4-N1	107.0(3)
C5-C4-C3	136.5(3)
С4-С5-Н5	125.8
C4-C5-C6	108.4(3)
С6-С5-Н5	125.8
C5-C6-C9	130.7(3)
C7-C6-C5	107.2(3)
C7-C6-C9	122.1(2)
N1-C7-C6	108.2(2)
N1-C7-C8	122.5(3)
C6-C7-C8	129.3(3)
N3-C8-C7	176.5(3)
С6-С9-Н9	107.9
C6-C9-C10	111.8(2)
C6-C9-C17	111.3(2)

С10-С9-Н9	107.9
С17-С9-Н9	107.9
C17-C9-C10	110.0(2)
C9-C10-H10A	109.2
C9-C10-H10B	109.2
H10A-C10-H10B	107.9
C11-C10-C9	111.9(2)
C11-C10-H10A	109.2
C11-C10-H10B	109.2
C12-C11-C10	119.1(3)
C16-C11-C10	122.3(3)
C16-C11-C12	118.5(4)
С11-С12-Н12	119.6
C13-C12-C11	120.7(3)
С13-С12-Н12	119.6
С12-С13-Н13	119.7
C14-C13-C12	120.5(3)
С14-С13-Н13	119.7
C13-C14-H14	120.4
C13-C14-C15	119.3(4)
С15-С14-Н14	120.4
С14-С15-Н15	119.7
C14-C15-C16	120.7(3)
С16-С15-Н15	119.7
C11-C16-C15	120.3(3)
С11-С16-Н16	119.8
С15-С16-Н16	119.8
O1-C17-O2	125.3(3)
O1-C17-C9	123.5(4)
O2-C17-C9	111.2(2)
O2-C18-H18A	109.4
O2-C18-H18B	109.4
O2-C18-C19	111.4(3)
H18A-C18-H18B	108.0
C19-C18-H18A	109.4
C19-C18-H18B	109.4
C18-C19-H19A	109.5
C18-C19-H19B	109.5

C18-C19-H19C	109.5
H19A-C19-H19B	109.5
H19A-C19-H19C	109.5
H19B-C19-H19C	109.5

Table 4. Anisotropic displacement parameters (Å²x 10³) for 6. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2 a^{*2}U^{11} + ... + 2h k a^{*} b^{*} U^{12}]$

	U11	U22	U33	U23	U13	U12	
01	51(1)	37(1)	59(1)	-1(1)	14(1)	-18(1)	
O2	43(1)	38(1)	47(1)	-13(1)	-1(1)	-17(1)	
N1	25(1)	28(1)	40(1)	-5(1)	2(1)	-14(1)	
N2	28(1)	31(1)	47(1)	-9(1)	0(1)	-10(1)	
N3	78(2)	44(2)	61(2)	2(1)	20(2)	-27(2)	
C1	28(1)	40(1)	48(2)	-10(1)	0(1)	-16(1)	
C2	31(1)	46(2)	42(1)	-10(1)	6(1)	-21(1)	
C3	33(1)	40(1)	39(1)	-6(1)	4(1)	-21(1)	
C4	30(1)	33(1)	36(1)	-5(1)	0(1)	-18(1)	
C5	28(1)	31(1)	38(1)	-3(1)	3(1)	-14(1)	
C6	27(1)	31(1)	36(1)	-8(1)	1(1)	-16(1)	
C7	30(1)	31(1)	34(1)	-5(1)	2(1)	-16(1)	
C8	42(2)	32(1)	44(2)	-5(1)	6(1)	-16(1)	
C9	28(1)	32(1)	34(1)	-4(1)	2(1)	-15(1)	
C10	33(1)	52(2)	37(1)	-9(1)	2(1)	-22(1)	
C11	27(1)	42(1)	37(1)	-9(1)	2(1)	-18(1)	
C12	35(1)	36(1)	42(1)	-12(1)	2(1)	-17(1)	
C13	39(2)	51(2)	43(2)	-2(1)	-2(1)	-30(1)	
C14	27(1)	61(2)	46(2)	-7(1)	5(1)	-21(1)	
C15	32(1)	46(2)	52(2)	-13(1)	3(1)	-9(1)	
C16	37(1)	38(1)	41(1)	-6(1)	2(1)	-17(1)	
C17	25(1)	33(1)	48(2)	-3(1)	2(1)	-13(1)	
C18	54(2)	49(2)	69(2)	-29(2)	-1(2)	-22(2)	
C19	64(2)	43(2)	56(2)	-9(2)	3(2)	-10(2)	

	Х	у	Z	U(eq)	
H1	13617	-1327	5589	45	
H2	13516	761	4173	45	
H3	11268	3086	4072	42	
Н5	8117	4524	5313	38	
Н9	6237	2893	7994	36	
H10A	4448	4462	5909	46	
H10B	4974	2591	6152	46	
H12	3649	1344	7678	43	
H13	1402	1503	8875	49	
H14	-462	3961	9195	51	
H15	-59	6270	8311	52	
H16	2176	6129	7085	45	
H18A	6424	7408	8627	65	
H18B	6330	6643	9907	65	
H19A	3547	8082	8395	83	
H19B	3950	8811	9492	83	
H19C	3429	7256	9650	83	

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for **6**.

Table 6. Torsion angles [°] for **6**.

N1-N2-C1-C2	-0.7(4)
N1-C4-C5-C6	0.0(3)
N2-N1-C4-C3	1.1(4)
N2-N1-C4-C5	-179.0(2)
N2-N1-C7-C6	179.0(2)
N2-N1-C7-C8	-0.7(4)
N2-C1-C2-C3	0.4(4)
C1-C2-C3-C4	0.6(4)
C2-C3-C4-N1	-1.3(4)
C2-C3-C4-C5	178.8(3)
C3-C4-C5-C6	179.9(3)
C4-N1-N2-C1	-0.1(3)
C4-N1-C7-C6	-0.1(3)
C4-N1-C7-C8	-179.8(2)
	C07

C4-C5-C6-C7	-0.1(3)
C4-C5-C6-C9	-177.7(2)
C5-C6-C7-N1	0.1(3)
C5-C6-C7-C8	179.7(3)
C5-C6-C9-C10	74.3(4)
C5-C6-C9-C17	-49.1(4)
C6-C9-C10-C11	160.4(2)
C6-C9-C17-O1	64.3(3)
C6-C9-C17-O2	-115.2(2)
C7-N1-N2-C1	-179.0(2)
C7-N1-C4-C3	-179.9(2)
C7-N1-C4-C5	0.0(3)
C7-C6-C9-C10	-103.0(4)
C7-C6-C9-C17	133.6(3)
C9-C6-C7-N1	178.0(2)
C9-C6-C7-C8	-2.4(4)
C9-C10-C11-C12	-88.1(3)
C9-C10-C11-C16	88.8(3)
C10-C9-C17-O1	-60.2(3)
C10-C9-C17-O2	120.3(2)
C10-C11-C12-C13	177.0(2)
C10-C11-C16-C15	-176.4(2)
C11-C12-C13-C14	-0.2(4)
C12-C11-C16-C15	0.5(4)
C12-C13-C14-C15	-0.1(4)
C13-C14-C15-C16	0.5(4)
C14-C15-C16-C11	-0.7(4)
C16-C11-C12-C13	-0.1(4)
C17-O2-C18-C19	84.8(3)
C17-C9-C10-C11	-75.4(3)
C18-O2-C17-O1	0.0(4)
C18-O2-C17-C9	179.5(2)

Table 7. Hydrogen bonds for 6 [Å and °].

D-HA d(D-H	l) d(HA)	d(DA)	<(DHA)
------------	----------	-------	--------

X-Ray Crystallography Data of 7

Table 1. Crystal data and structure ref	inement for 7.	
Identification code	7	
Empirical formula	C23 H18 Br N3 O2	
Formula weight	448.31	
Temperature	173.1500 K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P -1	
Unit cell dimensions	a = 9.234(3) Å	a= 74.328(11)°
	b = 10.079(3) Å	b= 87.518(14)°
	c = 11.771(4) Å	g = 72.598(10)°
Volume	1005.7(5) Å ³	
Z	2	
Density (calculated)	1.480 Mg/m^3	
Absorption coefficient	2.068 mm ⁻¹	
F(000)	456	
Crystal size	0.48 x 0.46 x 0.05 m	m ³
Theta range for data collection	1.798 to 27.510°	
Index ranges	-12<=h<=12, -13<=h	x<=13, -15<=1<=15
Reflections collected	12571	
Independent reflections	4584 [R(int) = 0.041	4]
Completeness to theta = 26.000°	99.6 %	
Absorption correction	Semi-empirical from	equivalents
Max. and min. transmission	1.0000 and 0.4524	
Refinement method	Full-matrix least-squ	ares on F ²
Data / restraints / parameters	4584 / 0 / 263	
Goodness-of-fit on F ²	1.084	
	S89	

Final R indices [I>2sigma(I)]	R1 = 0.0405, wR2 = 0.0915
R indices (all data)	R1 = 0.0448, wR2 = 0.0964
Extinction coefficient	n/a
Largest diff. peak and hole	0.701 and -0.738 e.Å ⁻³

	Х	у	Z	U(eq)
Br1	3229(1)	8878(1)	10259(1)	46(1)
01	8862(2)	5627(2)	6307(2)	35(1)
O2	9232(2)	3944(2)	8047(1)	32(1)
N1	6354(2)	592(2)	5206(2)	25(1)
N2	6961(2)	1617(2)	5369(2)	21(1)
N3	4009(2)	2249(2)	7285(2)	39(1)
C1	6992(2)	-22(2)	4398(2)	27(1)
C2	8234(2)	285(2)	3706(2)	24(1)
C3	8830(2)	-428(2)	2842(2)	29(1)
C4	10031(3)	-126(2)	2207(2)	32(1)
C5	10658(2)	885(2)	2431(2)	31(1)
C6	10084(2)	1609(2)	3274(2)	26(1)
C7	8852(2)	1321(2)	3919(2)	21(1)
C8	8155(2)	2035(2)	4797(2)	22(1)
С9	8368(2)	3100(2)	5259(2)	24(1)
C10	7298(2)	3315(2)	6127(2)	22(1)
C11	6429(2)	2391(2)	6180(2)	22(1)
C12	5103(2)	2289(2)	6800(2)	25(1)
C13	7030(2)	4328(2)	6908(2)	23(1)
C14	8465(2)	4721(2)	7037(2)	24(1)
C15	10651(3)	4222(3)	8235(2)	40(1)
C16	11328(4)	3257(3)	9400(3)	56(1)
C17	5689(2)	5705(2)	6430(2)	27(1)
C18	5119(2)	6482(2)	7370(2)	26(1)
C19	4070(3)	6057(3)	8161(2)	35(1)
C20	3519(3)	6747(3)	9032(2)	37(1)
C21	4027(3)	7876(2)	9112(2)	31(1)
C22	5078(3)	8313(2)	8351(2)	31(1)
C23	5614(2)	7612(2)	7483(2)	30(1)

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for 7. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Br1-C21	1.896(2)
O1-C14	1.207(3)
O2-C14	1.329(3)
O2-C15	1.457(3)
N1-N2	1.371(2)
N1-C1	1.298(3)
N2-C8	1.381(2)
N2-C11	1.377(2)
N3-C12	1.145(3)
C1-H1	0.9300
C1-C2	1.439(3)
C2-C3	1.401(3)
C2-C7	1.412(3)
С3-Н3	0.9300
C3-C4	1.374(3)
C4-H4	0.9300
C4-C5	1.399(3)
С5-Н5	0.9300
C5-C6	1.383(3)
С6-Н6	0.9300
C6-C7	1.400(3)
C7-C8	1.437(3)
C8-C9	1.392(3)
С9-Н9	0.9300
C9-C10	1.404(3)
C10-C11	1.388(3)
C10-C13	1.512(3)
C11-C12	1.414(3)
С13-Н13	0.9800
C13-C14	1.516(3)
C13-C17	1.545(3)
C15-H15A	0.9700
C15-H15B	0.9700
C15-C16	1.486(4)
C16-H16A	0.9600
C16-H16B	0.9600

Table 3. Bond lengths [Å] and angles [°] for 7.

C16-H16C	0.9600
C17-H17A	0.9700
C17-H17B	0.9700
C17-C18	1.511(3)
C18-C19	1.393(3)
C18-C23	1.387(3)
С19-Н19	0.9300
C19-C20	1.387(3)
С20-Н20	0.9300
C20-C21	1.380(3)
C21-C22	1.382(3)
С22-Н22	0.9300
C22-C23	1.387(3)
С23-Н23	0.9300
C14-O2-C15	115.77(17)
C1-N1-N2	114.19(16)
N1-N2-C8	127.83(16)
N1-N2-C11	122.68(16)
C11-N2-C8	109.48(16)
N1-C1-H1	117.1
N1-C1-C2	125.71(18)
C2-C1-H1	117.1
C3-C2-C1	121.24(19)
C3-C2-C7	120.31(19)
C7-C2-C1	118.45(18)
С2-С3-Н3	120.1
C4-C3-C2	119.9(2)
С4-С3-Н3	120.1
С3-С4-Н4	120.1
C3-C4-C5	119.8(2)
С5-С4-Н4	120.1
С4-С5-Н5	119.3
C6-C5-C4	121.4(2)
С6-С5-Н5	119.3
С5-С6-Н6	120.3
C5-C6-C7	119.4(2)
С7-С6-Н6	120.3

C2-C7-C8	117.07(17)
C6-C7-C2	119.24(18)
C6-C7-C8	123.68(18)
N2-C8-C7	116.72(17)
N2-C8-C9	107.21(17)
C9-C8-C7	136.07(18)
С8-С9-Н9	126.0
C8-C9-C10	107.97(17)
С10-С9-Н9	126.0
C9-C10-C13	130.31(17)
C11-C10-C9	107.53(17)
C11-C10-C13	122.17(18)
N2-C11-C10	107.80(17)
N2-C11-C12	121.20(17)
C10-C11-C12	130.57(19)
N3-C12-C11	177.9(2)
С10-С13-Н13	108.2
C10-C13-C14	109.98(16)
C10-C13-C17	111.87(17)
С14-С13-Н13	108.2
C14-C13-C17	110.39(16)
С17-С13-Н13	108.2
O1-C14-O2	124.19(19)
O1-C14-C13	124.0(2)
O2-C14-C13	111.85(17)
02-C15-H15A	110.2
O2-C15-H15B	110.2
O2-C15-C16	107.5(2)
H15A-C15-H15B	108.5
C16-C15-H15A	110.2
C16-C15-H15B	110.2
C15-C16-H16A	109.5
C15-C16-H16B	109.5
C15-C16-H16C	109.5
H16A-C16-H16B	109.5
H16A-C16-H16C	109.5
H16B-C16-H16C	109.5
C13-C17-H17A	109.3
С13-С17-Н17В	109.3
H17A-C17-H17B	108.0

C18-C17-C13	111.51(18)
C18-C17-H17A	109.3
C18-C17-H17B	109.3
C19-C18-C17	119.82(19)
C23-C18-C17	122.07(19)
C23-C18-C19	118.1(2)
C18-C19-H19	119.3
C20-C19-C18	121.4(2)
С20-С19-Н19	119.3
С19-С20-Н20	120.5
C21-C20-C19	118.9(2)
С21-С20-Н20	120.5
C20-C21-Br1	119.51(18)
C20-C21-C22	121.1(2)
C22-C21-Br1	119.32(17)
C21-C22-H22	120.5
C21-C22-C23	119.1(2)
С23-С22-Н22	120.5
С18-С23-Н23	119.3
C22-C23-C18	121.3(2)
С22-С23-Н23	119.3

Table 4. Anisotropic displacement parameters (Å²x 10³) for 7. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2 a^{*2}U^{11} + ... + 2h k a^{*} b^{*} U^{12}]$

	тт 1 1	тт 2 2	1133	1123	1113	1112	
	011	022	055	023	015	012	
Br1	56(1)	49(1)	35(1)	-21(1)	10(1)	-8(1)	
01	39(1)	38(1)	35(1)	-6(1)	1(1)	-24(1)	
O2	28(1)	32(1)	34(1)	-5(1)	-4(1)	-10(1)	
N1	24(1)	26(1)	31(1)	-12(1)	4(1)	-14(1)	
N2	19(1)	21(1)	26(1)	-9(1)	3(1)	-9(1)	
N3	33(1)	49(1)	44(1)	-22(1)	14(1)	-20(1)	
C1	26(1)	29(1)	33(1)	-14(1)	4(1)	-14(1)	
C2	22(1)	24(1)	26(1)	-6(1)	0(1)	-6(1)	

S94

C3	28(1)	30(1)	32(1)	-14(1)	2(1)	-9(1)
C4	30(1)	36(1)	31(1)	-16(1)	6(1)	-7(1)
C5	27(1)	35(1)	31(1)	-9(1)	9(1)	-11(1)
C6	22(1)	27(1)	29(1)	-7(1)	4(1)	-8(1)
C7	20(1)	20(1)	23(1)	-4(1)	0(1)	-6(1)
C8	19(1)	21(1)	25(1)	-5(1)	2(1)	-7(1)
C9	22(1)	22(1)	30(1)	-10(1)	3(1)	-11(1)
C10	21(1)	20(1)	26(1)	-6(1)	0(1)	-7(1)
C11	20(1)	23(1)	25(1)	-9(1)	4(1)	-8(1)
C12	26(1)	27(1)	29(1)	-13(1)	4(1)	-12(1)
C13	22(1)	23(1)	26(1)	-9(1)	2(1)	-9(1)
C14	24(1)	23(1)	30(1)	-14(1)	4(1)	-8(1)
C15	28(1)	46(1)	48(2)	-14(1)	-7(1)	-13(1)
C16	47(2)	56(2)	59(2)	-7(2)	-20(1)	-12(1)
C17	25(1)	26(1)	31(1)	-10(1)	-1(1)	-5(1)
C18	23(1)	22(1)	30(1)	-7(1)	-2(1)	-3(1)
C19	35(1)	31(1)	45(1)	-14(1)	9(1)	-15(1)
C20	37(1)	40(1)	38(1)	-11(1)	12(1)	-16(1)
C21	32(1)	30(1)	29(1)	-11(1)	1(1)	-3(1)
C22	34(1)	26(1)	37(1)	-12(1)	2(1)	-10(1)
C23	28(1)	28(1)	34(1)	-9(1)	5(1)	-10(1)

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for 7.

Х	у	Z	U(eq)	
((12)	720	4254	22	
6612	-/20	4254	32	
8414	-1105	2699	34	
10425	-593	1629	38	
11479	1075	2004	37	
10512	2281	3410	31	
9091	3584	5033	28	
6784	3822	7693	27	
10459	5224	8229	47	
11339	4025	7614	47	
11537	2268	9389	84	
10628	3447	10006	84	
	x 6612 8414 10425 11479 10512 9091 6784 10459 11339 11537 10628	x y 6612 -720 8414 -1105 10425 -593 11479 1075 10512 2281 9091 3584 6784 3822 10459 5224 11339 4025 11537 2268 10628 3447	x y z 6612 -720 4254 8414 -1105 2699 10425 -593 1629 11479 1075 2004 10512 2281 3410 9091 3584 5033 6784 3822 7693 10459 5224 8229 11339 4025 7614 11537 2268 9389 10628 3447 10006	xyzU(eq) 6612 -720 4254 32 8414 -1105 2699 34 10425 -593 1629 38 11479 1075 2004 37 10512 2281 3410 31 9091 3584 5033 28 6784 3822 7693 27 10459 5224 8229 47 11339 4025 7614 47 11537 2268 9389 84 10628 3447 10006 84

H16C	12256	3432	9558	84
H17A	6013	6348	5767	33
H17B	4868	5445	6149	33
H19	3733	5295	8103	42
H20	2819	6454	9554	45
H22	5422	9068	8419	38
H23	6320	7906	6967	36

Table 6. Torsion angles [°] for 7.

-177.50(17)
0.2(3)
-179.72(18)
179.38(17)
-7.4(3)
-179.2(2)
1.1(3)
0.4(3)
0.5(2)
-1.1(3)
179.52(19)
-179.1(2)
178.55(19)
-1.9(3)
0.4(3)
1.3(3)
-178.8(2)
-1.2(3)
178.38(18)
-0.8(4)
0.2(3)
0.8(3)
-178.7(2)
-179.18(18)
0.8(4)
0.6(3)
-179.4(2)
-0.1(2)

C8-N2-C11-C12	173.10(19)
C8-C9-C10-C11	-0.6(2)
C8-C9-C10-C13	179.5(2)
C9-C10-C11-N2	0.4(2)
C9-C10-C11-C12	-171.9(2)
C9-C10-C13-C14	-23.5(3)
C9-C10-C13-C17	99.6(2)
C10-C13-C14-O1	80.3(2)
C10-C13-C14-O2	-99.4(2)
C10-C13-C17-C18	162.58(17)
C11-N2-C8-C7	179.68(17)
C11-N2-C8-C9	-0.3(2)
C11-C10-C13-C14	156.63(19)
C11-C10-C13-C17	-80.3(2)
C13-C10-C11-N2	-179.65(17)
C13-C10-C11-C12	8.0(3)
C13-C17-C18-C19	-84.4(2)
C13-C17-C18-C23	95.1(2)
C14-O2-C15-C16	180.0(2)
C14-C13-C17-C18	-74.6(2)
C15-O2-C14-O1	-1.2(3)
C15-O2-C14-C13	178.52(18)
C17-C13-C14-O1	-43.6(3)
C17-C13-C14-O2	136.70(18)
C17-C18-C19-C20	-179.8(2)
C17-C18-C23-C22	180.0(2)
C18-C19-C20-C21	-0.1(4)
C19-C18-C23-C22	-0.5(3)
C19-C20-C21-Br1	177.64(19)
C19-C20-C21-C22	-0.6(4)
C20-C21-C22-C23	0.8(4)
C21-C22-C23-C18	-0.2(3)
C23-C18-C19-C20	0.7(4)

Table 7. Hydrogen bonds for sa4017 [Å and $^\circ\mbox{]}.$

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)

X-Ray Crystallography Data of 3aa'

Table 1. Crystal data and structure refineme	ent for 3aa' .			
Identification code	3aa'			
Empirical formula	C24 H19 Br N4 O2			
Formula weight	475.34			
Temperature	173.1500 K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	P 1 21/n 1			
Unit cell dimensions	a = 8.775(2) Å	a= 90°.		
	b = 16.891(3) Å	b=93.444(3)°.		
	c = 14.538(4) Å	$g = 90^{\circ}$.		
Volume	2150.9(9) Å ³			
Z	4			
Density (calculated)	1.468 Mg/m ³			
Absorption coefficient	1.940 mm ⁻¹			
F(000)	968			
Crystal size	0.266 x 0.188 x 0.159 mm	3		
Theta range for data collection	2.412 to 27.477°.			
Index ranges	-11<=h<=11, -21<=k<=2	l, -18<=l<=18		
Reflections collected	15229			
Independent reflections	4899 [R(int) = 0.0368]			
Completeness to theta = 26.000°	99.5 %			
Absorption correction	Semi-empirical from equi	valents		
Max. and min. transmission	1.0000 and 0.7571			

S98

Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4899 / 306 / 366
Goodness-of-fit on F ²	1.184
Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient	R1 = 0.0504, $wR2 = 0.1064R1 = 0.0622$, $wR2 = 0.1130n/a$
Largest diff. peak and hole	0.291 and -0.261 e.Å ⁻³

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3)

for 3aa'	. U(eq) is defined	as one third	of the trace	of the orthogo	onalized U ^{ij}	tensor.

	Х	у	Z	U(eq)	
Br1	5206(6)	6543(1)	10145(1)	56(1)	
O1	5260(2)	3698(1)	4930(1)	38(1)	
O2	4222(10)	2688(7)	5618(7)	32(1)	
N1	2357(2)	3156(1)	7136(1)	26(1)	
N2	1717(2)	2776(1)	7880(1)	32(1)	
N3	777(3)	4786(2)	8148(2)	60(1)	
N4	-1060(3)	3471(2)	5862(2)	55(1)	
C1	4194(2)	3915(1)	6398(1)	24(1)	
C2	2586(2)	4250(1)	6181(1)	25(1)	
C3	1474(2)	3834(1)	6801(2)	29(1)	
C4	3950(2)	3427(1)	7276(1)	24(1)	
C5	4931(3)	2729(1)	7552(1)	27(1)	
C6	6440(3)	2622(2)	7347(2)	37(1)	
C7	7264(3)	1988(2)	7719(2)	47(1)	
C8	6601(4)	1459(2)	8299(2)	50(1)	
С9	5100(4)	1557(1)	8506(2)	44(1)	
C10	4243(3)	2188(1)	8132(1)	30(1)	
C11	2653(3)	2314(1)	8334(2)	33(1)	
C12	4583(2)	3425(1)	5551(1)	26(1)	
C13	4699(10)	2156(4)	4889(5)	39(2)	
C14	4261(13)	1336(4)	5143(6)	71(2)	

C15	5420(3)	4576(1)	6533(2)	29(1)
C16	5400(3)	5035(1)	7419(2)	30(1)
C17	6348(17)	4903(9)	8218(11)	34(2)
C18	6284(11)	5358(7)	9008(6)	40(2)
C19	5207(11)	5930(7)	9045(8)	34(2)
C20	4208(12)	6103(7)	8341(7)	31(2)
C21	4410(20)	5659(12)	7548(14)	34(3)
C22	2175(3)	4798(1)	5570(2)	32(1)
C23	1061(3)	4379(2)	7561(2)	39(1)
C24	46(3)	3598(2)	6283(2)	37(1)
O2A	3792(18)	2703(14)	5518(14)	33(3)
C13A	4075(19)	2143(9)	4777(9)	41(3)
C14A	5110(30)	1516(10)	5150(9)	78(5)
Br1A	5792(15)	6431(5)	10125(2)	80(2)
C20A	4546(18)	5992(11)	8353(13)	40(3)
C19A	5671(15)	5838(10)	9039(11)	30(3)
C18A	6739(15)	5257(9)	8875(10)	35(2)
C17A	6610(19)	4857(11)	8041(11)	35(3)
C21A	4270(30)	5600(16)	7517(16)	33(3)

Table 3. Bond lengths [Å] and angles [°] for **3aa'**.

Br1-C19	1.906(12)
O1-C12	1.202(3)
O2-C12	1.290(12)
O2-C13	1.470(13)
N1-N2	1.403(2)
N1-C3	1.451(3)
N1-C4	1.473(3)
N2-C11	1.287(3)
N3-C23	1.136(3)
N4-C24	1.136(3)
C1-C2	1.535(3)
C1-C4	1.546(3)
C1-C12	1.539(3)
C1-C15	1.556(3)
C2-C3	1.537(3)

C2-C22	1.318(3)
C3-C23	1.498(3)
C3-C24	1.478(3)
C4-C5	1.500(3)
C5-C6	1.386(3)
C5-C10	1.404(3)
C6-C7	1.384(3)
C7-C8	1.380(4)
C8-C9	1.379(4)
C9-C10	1.396(3)
C10-C11	1.459(3)
C12-O2A	1.40(2)
C13-C14	1.490(10)
C15-C16	1.505(3)
C16-C17	1.405(9)
C16-C21	1.385(10)
C16-C17A	1.386(9)
C16-C21A	1.391(10)
C17-C18	1.39(2)
C18-C19	1.356(10)
C19-C20	1.339(10)
C20-C21	1.396(13)
O2A-C13A	1.47(2)
C13A-C14A	1.48(2)
Br1A-C19A	1.867(16)
C20A-C19A	1.386(9)
C20A-C21A	1.392(10)
C19A-C18A	1.387(9)
C18A-C17A	1.387(10)
C12-O2-C13	117.0(8)
N2-N1-C3	112.91(16)
N2-N1-C4	117.11(17)
C3-N1-C4	106.54(16)
C11-N2-N1	113.62(18)
C2-C1-C4	101.27(15)
C2-C1-C12	106.23(16)
C2-C1-C15	112.40(17)

C4-C1-C15	114.10(17)
C12-C1-C4	115.00(16)
C12-C1-C15	107.56(16)
C1-C2-C3	108.59(17)
C22-C2-C1	127.43(19)
C22-C2-C3	124.0(2)
N1-C3-C2	102.29(16)
N1-C3-C23	112.68(19)
N1-C3-C24	112.17(19)
C23-C3-C2	109.99(18)
C24-C3-C2	111.90(18)
C24-C3-C23	107.81(19)
N1-C4-C1	103.19(16)
N1-C4-C5	108.53(17)
C5-C4-C1	122.28(17)
C6-C5-C4	125.8(2)
C6-C5-C10	119.7(2)
C10-C5-C4	114.25(19)
C7-C6-C5	120.0(2)
C8-C7-C6	120.6(3)
C9-C8-C7	120.0(2)
C8-C9-C10	120.3(2)
C5-C10-C11	118.5(2)
C9-C10-C5	119.3(2)
C9-C10-C11	122.1(2)
N2-C11-C10	124.99(19)
O1-C12-O2	124.1(5)
O1-C12-C1	122.62(19)
O1-C12-O2A	125.0(9)
O2-C12-C1	113.0(5)
O2A-C12-C1	111.2(9)
O2-C13-C14	107.5(7)
C16-C15-C1	115.71(17)
C17-C16-C15	126.0(8)
C21-C16-C15	123.1(8)
C21-C16-C17	110.8(13)
C17A-C16-C15	113.5(8)
C17A-C16-C21A	127.3(11)

119.1(8)
123.0(12)
119.4(9)
117.1(8)
119.3(7)
123.5(10)
113.9(10)
129.2(13)
178.4(3)
175.1(3)
118.7(14)
108.7(12)
128.3(15)
120.6(11)
117.9(13)
121.4(10)
118.3(14)
118.9(13)
109.0(14)

Table 4. Anisotropic displacement parameters (Å²x 10³) for **3aa'**. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2 a^{*2}U^{11} + ... + 2h k a^{*} b^{*} U^{12}]$.

	U11	U ²²	U33	U23	U13	U12	
Br1	90(1)	49(1)	30(1)	-10(1)	2(1)	-12(1)	
01	48(1)	40(1)	29(1)	4(1)	18(1)	-1(1)	
O2	40(4)	29(2)	27(2)	-4(2)	12(3)	-4(3)	
N1	26(1)	27(1)	28(1)	4(1)	9(1)	-1(1)	
N2	37(1)	30(1)	31(1)	2(1)	12(1)	-8(1)	
N3	77(2)	51(1)	55(2)	-4(1)	30(1)	7(1)	
N4	33(1)	71(2)	61(2)	11(1)	1(1)	-3(1)	
C1	26(1)	23(1)	23(1)	4(1)	8(1)	1(1)	
C2	25(1)	25(1)	27(1)	0(1)	6(1)	0(1)	
				S103			

C3	26(1)	30(1)	32(1)	2(1)	8(1)	2(1)
C4	24(1)	24(1)	24(1)	1(1)	7(1)	-1(1)
C5	33(1)	26(1)	23(1)	1(1)	4(1)	2(1)
C6	38(1)	37(1)	35(1)	6(1)	7(1)	7(1)
C7	45(2)	51(2)	45(1)	5(1)	5(1)	20(1)
C8	65(2)	40(1)	46(2)	7(1)	1(1)	24(1)
C9	69(2)	27(1)	35(1)	7(1)	4(1)	5(1)
C10	44(1)	24(1)	24(1)	-1(1)	6(1)	0(1)
C11	44(1)	28(1)	28(1)	2(1)	12(1)	-8(1)
C12	29(1)	27(1)	24(1)	4(1)	5(1)	6(1)
C13	51(4)	35(2)	31(2)	-9(2)	13(3)	0(3)
C14	102(6)	37(3)	80(4)	-20(2)	54(4)	-17(3)
C15	27(1)	28(1)	32(1)	5(1)	7(1)	-1(1)
C16	30(1)	26(1)	33(1)	6(1)	2(1)	-8(1)
C17	34(4)	35(3)	33(4)	3(3)	-2(3)	5(3)
C18	38(4)	49(4)	33(3)	0(3)	-9(3)	-2(4)
C19	33(4)	34(3)	34(3)	1(2)	0(3)	-4(3)
C20	33(4)	30(3)	30(2)	-6(2)	3(2)	6(3)
C21	32(4)	35(5)	35(4)	1(3)	-3(3)	-5(4)
C22	31(1)	32(1)	33(1)	4(1)	5(1)	4(1)
C23	41(1)	37(1)	42(1)	5(1)	19(1)	6(1)
C24	26(1)	45(1)	42(1)	6(1)	8(1)	1(1)
O2A	39(6)	30(3)	31(5)	-8(3)	14(5)	-7(5)
C13A	49(6)	44(4)	32(4)	-13(3)	18(5)	-7(5)
C14A	119(11)	65(8)	51(6)	-13(5)	8(7)	53(8)
Br1A	121(4)	80(2)	38(1)	-19(1)	6(1)	-45(2)
C20A	36(6)	34(5)	51(5)	-6(4)	9(4)	0(4)
C19A	29(6)	34(5)	25(3)	0(3)	-7(4)	-12(5)
C18A	31(5)	35(4)	39(5)	2(3)	-8(4)	-1(4)
C17A	31(4)	39(4)	35(5)	0(4)	3(4)	-9(4)
C21A	40(6)	34(5)	25(5)	-7(4)	-1(4)	-9(5)

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for **3aa**'.

 X	У	Z	U(eq)

H4	3995	3796	7798	28
H6	6899	2977	6961	44
H7	8275	1918	7577	56
H8	7167	1038	8549	60
Н9	4656	1200	8897	52
H11	2287	2039	8829	40
H13A	5794	2190	4838	47
H13B	4196	2302	4301	47
H14A	4664	1220	5757	106
H14B	4668	967	4720	106
H14C	3168	1292	5116	106
H15A	6420	4337	6499	35
H15B	5285	4946	6024	35
H17	7052	4491	8216	41
H18	6973	5271	9509	48
H20	3449	6484	8377	37
H21	3790	5801	7032	41
H22A	2901	5027	5212	38
H22B	1160	4957	5497	38
H13C	4534	2416	4276	49
H13D	3120	1910	4540	49
H14D	4690	1277	5676	118
H14E	6090	1744	5331	118
H14F	5240	1121	4686	118
H20A	3895	6411	8464	48
H18A	7521	5138	9314	42
H17A	7325	4476	7901	42
H21A	3452	5699	7093	39

Table 6. Torsion angles [°] for **3aa'**.

Br1-C19-C20-C21	174.7(14)	
O1-C12-O2A-C13A	15.2(16)	
O2-C12-O2A-C13A	-78(4)	
N1-N2-C11-C10	1.0(3)	
N1-C4-C5-C6	148.4(2)	

N1-C4-C5-C10	-37.3(2)
N2-N1-C3-C2	166.57(16)
N2-N1-C3-C23	48.5(2)
N2-N1-C3-C24	-73.4(2)
N2-N1-C4-C1	-171.92(16)
N2-N1-C4-C5	57.0(2)
C1-C2-C3-N1	-15.2(2)
C1-C2-C3-C23	104.7(2)
C1-C2-C3-C24	-135.48(19)
C1-C4-C5-C6	28.7(3)
C1-C4-C5-C10	-157.07(19)
C1-C12-O2A-C13A	-177.3(10)
C1-C15-C16-C17	98.3(9)
C1-C15-C16-C21	-81.7(14)
C1-C15-C16-C17A	107.7(10)
C1-C15-C16-C21A	-75.4(18)
C2-C1-C4-N1	31.82(19)
C2-C1-C4-C5	154.11(19)
C2-C1-C12-O1	93.1(2)
C2-C1-C12-O2	-92.3(5)
C2-C1-C12-O2A	-74.8(8)
C2-C1-C15-C16	73.4(2)
C3-N1-N2-C11	-163.04(19)
C3-N1-C4-C1	-44.47(19)
C3-N1-C4-C5	-175.54(16)
C4-N1-N2-C11	-38.7(3)
C4-N1-C3-C2	36.7(2)
C4-N1-C3-C23	-81.4(2)
C4-N1-C3-C24	156.73(18)
C4-C1-C2-C3	-10.3(2)
C4-C1-C2-C22	170.0(2)
C4-C1-C12-O1	-155.8(2)
C4-C1-C12-O2	18.8(5)
C4-C1-C12-O2A	36.3(8)
C4-C1-C15-C16	-41.1(2)
C4-C5-C6-C7	173.6(2)
C4-C5-C10-C9	-173.8(2)
C4-C5-C10-C11	5.4(3)

C5-C6-C7-C8	-0.4(4)
C5-C10-C11-N2	15.6(3)
C6-C5-C10-C9	0.9(3)
C6-C5-C10-C11	-179.9(2)
C6-C7-C8-C9	0.5(4)
C7-C8-C9-C10	0.0(4)
C8-C9-C10-C5	-0.8(4)
C8-C9-C10-C11	-179.9(2)
C9-C10-C11-N2	-165.2(2)
C10-C5-C6-C7	-0.3(4)
C12-O2-C13-C14	176.1(10)
C12-C1-C2-C3	110.16(18)
C12-C1-C2-C22	-69.5(3)
C12-C1-C4-N1	-82.2(2)
C12-C1-C4-C5	40.1(3)
C12-C1-C15-C16	-169.99(18)
C12-O2A-C13A-C14A	101(2)
C13-O2-C12-O1	0.9(8)
C13-O2-C12-C1	-173.6(4)
C13-O2-C12-O2A	100(5)
C15-C1-C2-C3	-132.46(18)
C15-C1-C2-C22	47.8(3)
C15-C1-C4-N1	152.81(17)
C15-C1-C4-C5	-84.9(2)
C15-C1-C12-O1	-27.5(3)
C15-C1-C12-O2	147.1(5)
C15-C1-C12-O2A	164.6(8)
C15-C16-C17-C18	179.0(8)
C15-C16-C21-C20	176.0(18)
C15-C16-C17A-C18A	178.4(13)
C15-C16-C21A-C20A	-175.1(16)
C16-C17-C18-C19	3.9(18)
C17-C16-C21-C20	-4(3)
C17-C16-C17A-C18A	-32(4)

C17-C16-C21A-C20A	11(3)
C17-C18-C19-Br1	-179.0(9)
C17-C18-C19-C20	-2.0(16)
C18-C19-C20-C21	-2(2)
C19-C20-C21-C16	6(3)
C21-C16-C17-C18	-1.1(18)
C21-C16-C17A-C18A	8(2)
C21-C16-C21A-C20A	-47(16)
C22-C2-C3-N1	164.5(2)
C22-C2-C3-C23	-75.6(3)
C22-C2-C3-C24	44.2(3)
Br1A-C19A-C18A-C17A	-177.8(13)
C20A-C19A-C18A-C17A	-1(2)
C19A-C20A-C21A-C16	-5(4)
C19A-C18A-C17A-C16	-2(2)
C17A-C16-C17-C18	144(6)
C17A-C16-C21-C20	-14(3)
C17A-C16-C21A-C20A	1(4)
C21A-C16-C17-C18	-7(2)
C21A-C16-C21-C20	121(20)
C21A-C16-C17A-C18A	2(3)
C21A-C20A-C19A-Br1A	-178(2)
C21A-C20A-C19A-C18A	5(3)

Table 7. Hydrogen bonds for 3aa' [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)