Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supporting Information

For

Degradable Polyurethane with Poly(2-ethyl-2-oxazoline) Brushes

for Protein Resistance

Jinxian Yang,^a Lianwei Li,^a Chunfeng Ma,^b Xiaodong Ye*^a

a) Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China;
b) Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China

*To whom correspondence should be addressed: xdye@ustc.edu.cn

Samples	M_n (g/mol)	$M_{ m w}$ (g/mol)	PDI
PEtOx(OH) ₂ -1K	0.98×10 ³	1.17×10 ³	1.20
PU	5.59×10 ⁴	1.15×10 ⁵	2.05
PU-g-PEtOx1K-0.5	3.06×10 ⁴	3.06×10 ⁴	1.94
PU-g-PEtOx1K-0.7	3.49×10 ⁴	6.28×10 ⁴	1.80
PU-g-PEtOx1K-0.9	4.27×10 ⁴	8.57×10 ⁴	2.01
PU-g-PEtOx1K-1.0	6.26×10 ⁴	1.31×10 ⁵	2.10

Table S1. GPC results of PEtOx(OH)₂-1K and PU-g-PEtOx1K

Table S2. GPC results of PEtOx(OH)₂-2K and PU-g-PEtOx2K

Samples	M_n (g/mol)	$M_{ m w}$ (g/mol)	PDI
PEtOx(OH) ₂ -2K	2.02×10 ³	2.27×10 ³	1.12
PU	5.59×10 ⁴	1.15×10 ⁵	2.05
PU-g-PEtOx2K-0.5	4.56×10 ⁴	8.03×10 ⁴	1.76
PU-g-PEtOx2K-0.7	2.50×10 ⁴	3.95×10 ⁴	1.58
PU-g-PEtOx2K-0.9	1.65×10 ⁴	3.06×10 ⁴	1.86
PU-g-PEtOx2K-1.0	1.53×10 ⁴	2.71×10 ⁴	1.77

Figure S1. GPC traces from RI detector of PEtOx(OH)₂-1K and PU-g-PEtOx1K with various graft densities of PEtOx(OH)₂-1K.

Figure S2. GPC traces from RI detector of PEtOx(OH)₂-2K and PU-g-PEtOx2K with various graft densities of PEtOx(OH)₂-2K.

Figure S3. Time dependence of frequency shift (Δf) and dissipation shift (ΔD) for the adsorption of lysozyme on PU-g-PEtOx3K surfaces with various graft densities of PEtOx(OH)₂-3K at 25 °C.

Figure S4. Time dependence of frequency shift (Δf) and dissipation shift (ΔD) for the adsorption of fibrinogen on PU-g-PEtOx3K surfaces with various graft densities of PEtOx(OH)₂-3K at 25 °C.

Figure S5. Time dependence of frequency shift (Δf) and dissipation shift (ΔD) for the adsorption of BSA on PU-g-PEtOx1K surfaces with various graft densities of PEtOx(OH)₂-1K at 25 °C.

Figure S6. Time dependence of frequency shift (Δf) and dissipation shift (ΔD) for the adsorption of lysozyme on PU-*g*-PEtOx1K surfaces with various graft densities of PEtOx(OH)₂-1K at 25 °C.

Figure S7. Time dependence of frequency shift (Δf) and dissipation shift (ΔD) for the adsorption of fibrinogen on PU-g-PEtOx1K surfaces with various graft densities of PEtOx(OH)₂-1K at 25 °C.

Figure S8. Time dependence of frequency shift (Δf) and dissipation shift (ΔD) for the adsorption of BSA on PU-g-PEtOx2K surfaces with various graft densities of PEtOx(OH)₂-2K at 25 °C.

Figure S9. Time dependence of frequency shift (Δf) and dissipation shift (ΔD) for the adsorption of lysozyme on PU-g-PEtOx2K surfaces with various graft densities of PEtOx(OH)₂-2K at 25 °C.

Figure S10. Time dependence of frequency shift (Δf) and dissipation shift (ΔD) for the adsorption of fibrinogen on PU-g-PEtOx2K surfaces with various graft densities of PEtOx(OH)₂-2K at 25 °C.

Figure S11. Stationary water contact angle of PU and PU-g-PEtOx1K with various graft densities where the PEtOx(OH)₂-1K was employed.

Figure S12. Stationary water contact angle of PU and PU-g-PEtOx3K with various graft densities where the PEtOx(OH)₂-3K was employed.