Supporting Information

Tao-Phos -Controlled Desymmetrization of Succinimide-based

Bisalkynes via Asymmetric Copper-Catalyzed Huisgen Alkyne-Azide

Click Cycloaddition: Substrate Scope and Mechanism

Mu-Yi Chen^a, Tao Song^a, Zhan-Jiang Zheng^a, Zheng Xu^a, Yu-Ming Cui^a, and Li-Wen Xu^{*a,b}

 [a] Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, No 1378, Wenyi West Road, Science Park of HZNU, Hangzhou
 E-mail: <u>liwenxu@hznu.edu.cn</u> or <u>licpxulw@yahoo.com</u>

[b] State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences

[†] M.Y. Chen and T. Song contributed equally to this work.

Table of Contents

S-1. General information	2
General procedure for the catalytic asymmetric CuAAC reaction	2
S-2. characterization data of the substrates 1	4
S-3. Characterization data of the products in the click cycloaddition reaction	5
Table S1-S5 and Scheme S1.	.17
Figure S1. Negative NLE in the CuAAC with Tao-Phos	.23
Figure S2-7. ESI(+)-MS analysis for the reaction mixture	.24
S-4.NMR Spectra of the substrates 1	.31
S-5. NMR Spectra of the desired products 3	.33
S-6. HPLC Spectra of the new products 3 (Method A)	.52
S-7. HPLC Spectra of the new products 3 and 5 (Method B)	.82

S-1. General information

All reactions were performed in flame-dried glassware under an atmosphere of dry nitrogen, and the subsequent workup was carried out in air, unless otherwise noted. dichloromethane Toluene. Acetonitrile. (DCM), triethylamine (Et_3N) and N,N-dimethylformamide (DMF) were dried and distilled from calcium hydride. Ether (Et₂O) and tetrahydrofuran (THF) were dried and distilled from metal sodium and benzophenone. Alcohol solvents were dried and distilled from metal magnesium. CuF₂ was purchased from Aldrich and used directly without further purification. All reactions were monitored by thin layer chromatography (TLC). The NMR of ¹H and ¹³C spectra were recorded in CDCl₃ using Bruker 500 MHz or 400 MHz spectrometer, and referenced with respect to internal TMS standard. The following abbreviations were used to designate chemical shift multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet doublet, m = multiplet. The HPLC analyses of products were performed on the Angilent series with Chiralcel AD-H columns, AS-H columns, OD-H columns, IA-H columns, and IB-H columns. The Mass spectra were recorded on an Angilent instrument using the TOF MS technique.

S-2. General procedure for the catalytic asymmetric CuAAC reaction

3a: $R^1 = p$ -Cl, $R^2 = m$ -Me, $R^3 = p$ -OEt; **3b**: $R^1 = o$ -F, $R^2 = p$ -Me, $R^3 = p$ -OEt; **3c**: $R^1 = o$ -F, $R^2 = m$ -Me, $R^3 = p$ -OEt; **3d**: $R^1 = o$ -Br, $R^2 = p$ -Me, $R^3 = p$ -OEt; **3e**: $R^1 = p$ -Cl, $R^2 = o$ -OMe, $R^3 = p$ -OEt; **3f**: $R^1 = o$ -Br, $R^2 = o$ -OMe, $R^3 = p$ -OEt; **3g**: $R^1 = p$ -Br, $R^2 = p$ -Me, $R^3 = H$; **3h**: $R^1 = o$ -Br, $R^2 = p$ -Me, $R^3 = m$ -Br; **3i**: $R^1 = p$ -Cl, $R^2 = p$ -Me, $R^3 = p$ -OEt; **3j**: $R^1 = o$ -Br $R^2 = m$ -Me, $R^3 = p$ -OEt; **3k**: $R^1 = o$ -F, $R^2 = o$ -OMe, $R^3 = p$ -OEt; **3l**: $R^1 = o$ -Me, $R^2 = m$ -Me, $R^3 = p$ -OEt; **3m**: $R^1 = o$,p-2Cl, $R^2 = m$ -Me, $R^3 = p$ -OEt; **3m**: $R^1 = o$ -Br, $R^2 = m$ -Me, $R^3 = p$ -t-Bu; **3o**: $R^1 = o$ -OMe, $R^2 = m$ -Me, $R^3 = H$; **3p**: $R^1 = o$ -Br, $R^2 = p$ -Me, $R^3 = p$ -t-Bu

Method A: Under an atmosphere of N_2 , to an oven-dried Schlenk tube were added **Tao-Phos** (25 mg, 0.04 mmol) and CuF₂ (4 mg, 0.04 mmol), followed by the addition of CH₃CN (1.0 mL). After the solution was stirred at 25 °C for 1 hour, NEt₃ (7 µL, 0.05 mmol, 0.25 eq.) and benzyl azidoacetate (27.5 µL, 0.22 mmol) were added, and keep stirring for 0.5 hour. The reaction was cooled to 0 °C and the substrate (0.2 mmol) was added in additional CH₃CN (1 mL). The resulting mixture was stirred for 72 hours till almost full conversation to product **3** (TLC analysis). When the reaction was complete, it was quenched with saturated aqueous NH₄Cl (1 mL) and stirred vigorously for 5 minutes. The aqueous phase was extracted with ethyl acetate (3x5 mL). The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (PE/EA, 5/1-3/1) to get the products **3**.

Method B: Under an atmosphere of N₂, to an oven-dried Schlenk tube were added **Tao-Phos** (25 mg, 0.04 mmol) and CuF₂ (4 mg, 0.04 mmol), followed by the addition of 1.0 mL CH₃CN. After the solution was stirred at 25°C for 1 hour, the substrate (0.2 mmol) was added in another CH₃CN (1 mL), and keep stirring for 0.5 hour. NEt₃ (7 μ L, 0.05 mmol, 0.25 eq.) and Benzyl azidoacetate (27.5 μ L, 0.22 mmol) were added. The reaction was cooled to 0°C.The resulting mixture was stirred for 72 hours till almost full conversation to product **3** (TLC analysis). When the reaction was complete, it was quenched with saturated aqueous NH₄Cl (1 mL) and stirred vigorously for 5 minutes. The aqueous phase was extracted with ethyl acetate (3x5 mL). The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure. The

residue was purified by silica gel column chromatography (PE/EA, 5/1-3/1) to get the products **3**.

S-3. characterization data of the substrates 1

The synthesis of compound **L1-L6** and substrates **1** have already reported in the previous work.^[1,2]

¹**H NMR** (400 MHz, CDCl₃) δ 7.99 (s, 1 H), 7.51 (d, *J*=2.0Hz, 1 H), 7.40-7.38 (m, 1 H), 7.33 (dd, *J*=2.0, 8.4Hz, 1 H), 7.29-7.26 (m, 3 H), 6.98 (d, *J*=8.8Hz, 2 H), 4.06 (q, *J*=6.8Hz, 2 H), 2.74 (dd, *J*=2.8, 16.8Hz, 2 H), 2.31 (dd, *J*=2.4, 16.4Hz, 2 H), 2.08 (t, *J*=2.4Hz, 2 H), 1.43 (t, *J*=6.4Hz, 3 H), ; ¹³**C NMR** (100 MHz, CDCl₃) δ 176.4, 168.5, 159.2, 135.8, 135.1, 134.8, 132.0, 131.5, 134.8, 132.0, 131.5, 129.9, 129.8, 127.7, 127.1, 124.3, 115.0, 77.7, 72.3, 63.8, 50.4, 26.6, 14.8; **HRMS** (**ESI-TOF**): Exact mass calcd for $C_{25}H_{19}Cl_2NNaO_3$ [M + Na]⁺: 474.0637, Found: 474.0634.

¹**H NMR** (400 MHz, CDCl₃) δ 8.04 (s, 1 H), 7.67 (d, *J*=6.4Hz, 1 H), 7.53 (s, 1 H), 7.50 (s, 1 H), 7.46-7.44 (m, 1 H), 7.39 (t, *J*=6.8Hz, 1 H), 7.35 (s, 1 H), 7.32 (s, 1 H), 7.32-7.29 (m, 1 H), 2.73 (dd, *J*=2.4, 16.4Hz, 2 H), 2.35 (dd, *J*=2.4, 16.4Hz, 2 H), 2.07 (t, *J*=2.4Hz, 2 H), 1.35 (s, 9 H), ; ¹³**C NMR** (100 MHz, CDCl₃) δ 176.4, 168.6, 151.8,

138.1, 134.9, 133.0, 131.8, 130.5, 129.3, 129.0, 127.2, 126.2, 126.0, 123.4, 78.0, 72.2,
50.4, 34.8, 31.3, 26.6; HRMS (ESI-TOF): Exact mass calcd for C₂₇H₂₄BrNNaO₂ [M + Na]⁺: 496.0890, Found: 496.0883.

S-3. Characterization data of the products in the click cycloaddition reaction

4-(4-Chloro-benzylidene)-1-(4-ethoxy-phenyl)-3-[1-(3-methyl-benzyl)-1H-[1,2,3]t riazol-4-ylmethyl]-3-prop-2-ynyl-pyrrolidine-2,5-dione

Compound **3a** was obtained in 61% yield as white solid, 90% *ee* determined by HPLC analysis (Chiralcel IB-H column, hexane: *i*-PrOH 70 : 30, 1.0 ml/min, 254nm) . Retention time: t_{minor} = 25.92, t_{major} = 18.69. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (s, 1 H), 7.74 (dd, *J*=4.0, 6.4Hz, 1 H), 7.43 (dd, *J*=3.6, 6.4Hz, 1 H), 7.36-7.34 (m, 2 H), 7.26-7.21 (m, 1 H), 7.14 (d, *J*=8.4Hz, 2 H), 7.05 (d, *J*=8.8Hz, 2 H), 6.98 (s, 2 H), 6.89 (d, 8.8Hz, 2 H), 5.39 (dd, *J*=14.8, 32.4Hz, 2 H), 4.04 (q, *J*=6.8Hz, 2 H), 3.23 (d, *J*=14.8Hz, 1 H), 2.93-2.87 (m, 2 H), 2.55 (dd, *J*=2.4, 16.4Hz, 1 H), 2.30 (s, 3 H), 2.08 (q, *J*=3.6Hz, 1 H), 1.42 (q, *J*=7.2Hz, 3 H), ; ¹³C NMR (100 MHz, CDCl₃) δ 177.3, 168.6, 159.0, 139.1, 136.0, 134.5, 133.9, 133.0, 132.2, 130.4, 129.7, 129.5, 129.0, 128.6, 127.7, 126.7, 125.0, 124.6, 122.0, 115.0, 78.2, 72.1, 63.7, 54.1, 51.1, 32.4, 27.9, 21.3, 14.8; **IR** (KBr, cm⁻¹) ν_{max} 3305, 2977, 1709, 1651, 1513, 1396, 1248, 1168, 1050, 745. [α]_D²⁰= +20.98 (c=3.71 CHCl₃). **HRMS (ESI-TOF)**: Exact mass calcd for C₃₃H₂₉ClN₄O₃H [M + H]⁺: 565.2001, Found: 565.2001.

1-(4-Ethoxy-phenyl)-4-(2-fluoro-benzylidene)-3-[1-(4-methyl-benzyl)-1H-[1,2,3]tr iazol-4-ylmethyl]-3-prop-2-ynyl-pyrrolidine-2,5-dione

Compound **3b** was obtained in 75% yield as white solid, 83% *ee* determined by HPLC analysis (Chiralcel IA-H column, hexane: *i*-PrOH 70 : 30, 1.0 ml/min, 254nm). Retention time: t_{minor} = 30.12, t_{major} = 41.13. ¹**H NMR** (400 MHz, CDCl₃) δ 7.91 (s, 1 H), 7.61 (t, *J*=7.2Hz, 1 H), 7.41 (dd, *J*=6.4, 13.2Hz, 1 H), 7.23 (t, *J*=7.6Hz, 1 H), 7.51-7.11 (m, 4 H), 7.07-7.03 (m, 4 H), 6.90 (d, *J*=8.8Hz, 2 H), 5.33 (dd, *J*=14.8, 34.0Hz, 2 H), 4.04 (q, *J*=7.2Hz, 2 H), 3.26 (d, *J*=14.4Hz, 1 H), 2.94-2.89 (m, 2 H), 2.56 (dd, *J*=3.2, 16.8Hz, 1 H), 2.34 (s, 3 H), 2.06 (s, 1 H), 1.42 (t, *J*=7.2Hz, 3 H), ; ¹³C NMR (100 MHz, CDCl₃) δ 177.2, 168.6, 159.9 (d, *J* = 247.4 Hz), 159.0, 138.6, 133.1, 132.1, 131.6, 131.1 (d, *J* = 7.9 Hz), 129.9 (d, *J* = 2.2 Hz), 127.9, 127.7, 124.5, 124.2 (d, *J* = 3.6 Hz), 122.2 (d, *J* = 15.3 Hz), 121.9, 115.9 (d, *J* = 21.1 Hz), 114.9, 78.1, 77.3, 77.0, 76.7, 71.9, 63.7, 53.8, 51.4, 32.2, 27.2, 21.1, 14.8; ¹⁹F NMR (471 MHz,) δ -110.89 ppm. **IR** (KBr, cm⁻¹) v_{max} 3304, 2977, 1710, 1652, 1513, 1396, 1248, 1119, 824, 756. [α]_D²⁰= +5.32 (c=3.00 CHCl₃). **HRMS (ESI-TOF**): Exact mass calcd for C₃₃H₂₉FN₄O₃H [M + H]⁺: 549.2296, Found: 549.2296.

1-(4-Ethoxy-phenyl)-4-(2-fluoro-benzylidene)-3-[1-(3-methyl-benzyl)-1H-[1,2,3]tr iazol-4-ylmethyl]-3-prop-2-ynyl-pyrrolidine-2,5-dione

Compound 3c was obtained in 61% yield as white solid, 81% ee determined by HPLC

analysis (Chiralcel IB-H column, hexane: *i*-PrOH 70 : 30, 1.0 ml/min, 254nm) . Retention time: t_{minor} = 27.61, t_{major} = 20.19. ¹**H NMR** (400 MHz, CDCl₃) δ 7.90 (s, 1 H), 7.60 (t, *J*=7.2Hz, 1 H), 7.43-7.37 (m, 1H), 7.22 (t, *J*=8.0Hz, 2 H), 7.15-7.09 (m, 3 H), 7.06-7.04 (m, 2 H), 6.96 (d, *J*=6.0Hz, 2 H), 6.89 (d, *J*=13.6Hz, 2 H), 5.39 (dd, *J*=14.8, 28.0Hz, 2 H), 4.04 (q, *J*=7.2Hz, 2 H), 3.26 (d, *J*=14.4Hz, 1 H), 2.94-2.89 (m, 2 H), 2.56 (dd, *J*=2.8, 16.4Hz, 1 H), 2.29 (s, 3 H), 2.06 (t, *J*=2.4Hz, 1 H), 1.42 (t, *J*=6.8Hz, 3 H), ; ¹³C NMR (100 MHz, CDCl₃) δ 177.2, 168.6, 159.9 (d, *J* = 247.4 Hz), 159.0, 142.1, 139.0, 134.6, 133.1, 132.0, 131.1 (d, *J* = 8.0 Hz), 129.9 (d, *J* = 2.4 Hz), 122.0, 115.9 (d, *J* = 21.1 Hz), 115.0, 78.1, 71.9, 63.7, 54.0, 51.4, 32.2, 27.2, 21.2, 14.8; ¹⁹F NMR (471 MHz,) δ -110.86 ppm. IR (KBr, cm⁻¹) v_{max} 3306, 2977, 1710, 1652, 1513, 1396, 1248, 1168, 1050, 745. [α]_D²⁰= +21.09 (c=2.71 CHCl₃). HRMS (ESI-TOF): Exact mass calcd for C₃₃H₂₉FN₄O₃H [M + H]⁺: 549.2296, Found: 549.2296.

4-(2-Bromo-benzylidene)-1-(4-ethoxy-phenyl)-3-[1-(4-methyl-benzyl)-1H-[1,2,3]t riazol-4-ylmethyl]-3-prop-2-ynyl-pyrrolidine-2,5-dione

Compound **3d** was obtained in 67% yield as white solid, 97% *ee* determined by HPLC analysis (Chiralcel IB-H column, hexane: *i*-PrOH 70 : 30, 1.0 ml/min, 254nm). Retention time: t_{minor} = 24.76, t_{major} = 19.68. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (s, 1 H), 7.76 (d, *J*=7.6Hz, 1 H), 7.62 (d, *J*=8.0Hz, 1 H), 7.41 (t, *J*=7.6Hz, 1 H), 7.29-7.26 (m, 1 H), 7.14 (d, *J*=3.6Hz, 3 H), 7.07 (t, *J*=7.6Hz, 4 H), 6.90 (d, *J*=9.2Hz, 4 H), 5.45 (dd, *J*=14.8, 35.2Hz, 2 H), 4.05 (q, *J*=7.2Hz, 2 H), 3.23 (d, *J*=14.8Hz, 1 H), 2.90 (d, *J*=15.6Hz, 2 H), 2.56 (dd, *J*=2.8,14Hz, 1 H), 2.34 (s, 3 H), 2.08 (s, 1 H), 1.43 (t, *J*=6.8Hz, 3 H), ; ¹³C NMR (100 MHz, CDCl₃) δ 177.3, 168.9, 158.9, 138.6, 137.8,

134.9, 132.9, 131.8, 131.5, 130.5, 129.8, 128.0, 127.7, 127.3, 124.5, 123.5, 114.9, 78.3, 72.2, 63.7, 53.9, 51.0, 32.4, 28.0, 21.1, 14.8; **IR** (KBr, cm⁻¹) υ_{max} 3454, 2924, 1713, 1660, 1512, 1397, 1251, 1169, 1046, 750. $[\alpha]_D{}^{20}= +31.24$ (c=3.00 CHCl₃). **HRMS (ESI-TOF**): Exact mass calcd for C₃₃H₂₉BrN₄O₃H [M + H]⁺: 609.1497, Found: 609.1496.

4-(4-Chloro-benzylidene)-1-(4-ethoxy-phenyl)-3-[1-(2-methoxy-benzyl)-1H-[1,2,3]]triazol-4-ylmethyl]-3-prop-2-ynyl-pyrrolidine-2,5-dione

Compound **3e** was obtained in 72% yield as white solid, 83% *ee* determined by HPLC analysis (Chiralcel IB-H column, hexane: *i*-PrOH 70 : 30, 1.0 ml/min, 254nm) . Retention time: t_{minor} = 34.01, t_{major} = 24.75. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (s, 1 H), 7.39 (q, *J*=8.8Hz, 4 H), 7.25-7.21 (t, 1 H), 7.02 (s, 1 H), 6.94 (d, *J*=8.8Hz, 2 H), 6.87-6.84 (m, 3 H), 6.73-6.68 (m, 2 H), 5.35 (dd, *J*=14.8, 28.0Hz, 2 H), 4.01 (dd, *J*=7.2, 14Hz, 2 H), 3.71 (s, 3 H), 3.20 (d, *J*=14.8Hz, 1 H), 2.96-2.84 (m, 2 H), 2.55-2.51 (m, 1 H), 2.23 (t, *J*=2.4Hz, 1 H), 1.39 (t, *J*=6.8Hz, 3 H), ; ¹³C NMR (100 MHz, CDCl₃) δ 168.9, 160.2, 159.0, 142.3, 137.8, 136.0, 135.1, 132.8, 131.1, 130.3, 129.7, 128.9, 127.6, 124.4, 121.8, 120.1, 115.0, 114.6, 113.3, 78.1, 72.0, 63.7, 55.3, 54.0, 51.4, 31.9, 29.7, 27.4, 14.8; **IR** (KBr, cm⁻¹) υ_{max} 3414, 2923, 1711, 1512, 1385, 1252, 1166, 1045, 751. [α]_D²⁰= +6.73 (c=3.20 CHCl₃). **HRMS (ESI-TOF)**: Exact mass calcd for C₃₃H₂₉ClN₄O₄H [M + H]⁺: 581.1950, Found: 581.1950.

4-(2-Bromo-benzylidene)-1-(4-ethoxy-phenyl)-3-[1-(2-methoxy-benzyl)-1H-[1,2,3]

triazol-4-ylmethyl]-3-prop-2-ynyl-pyrrolidine-2,5-dione

Compound **3f** was obtained in 73% yield as white solid, 87% *ee* determined by HPLC analysis (Chiralcel IB-H column, hexane: *i*-PrOH 70 : 30, 1.0 ml/min, 254nm) . Retention time: t_{minor} = 32.74, t_{major} = 23.70. ¹**H NMR** (400 MHz, CDCl₃) δ 7.88 (s, 1 H), 7.76 (d, *J*=7.2Hz, 1 H), 7.63 (d, *J*=8.0Hz, 1 H), 7.41 (q, *J*=7.2Hz, 1 H), 7.30-7.26 (m, 2 H), 7.12 (s, 1 H), 7.07 (d, *J*=8.8Hz, 2 H), 6.92-6.87 (m, 3 H), 6.78-6.73 (m, 2 H), 5.40 (dd, *J*=14.8, 36.4Hz, 2 H), 4.05 (q, *J*=6.8Hz, 2 H), 3.75 (s, 3 H), 3.23 (d, *J*=7.2Hz, 1 H), 2.90 (d, *J*=14.4Hz, 2 H), 2.56 (dd, *J*=2.4, 16.8Hz, 1 H), 2.08 (q, *J*=2.4, 1 H), 1.43 (q, *J*=6.8Hz, 3 H), ; ¹³C NMR (100 MHz, CDCl₃) δ 177.3, 168.7, 160.2, 159.0, 137.8, 136.0, 134.9, 132.9, 131.8, 130.5, 130.2, 129.8, 127.7, 127.3, 124.5, 123.5, 122.1, 120.2, 115.0, 114.6, 113.3, 78.2, 72.2, 63.7, 55.3, 54.1, 51.0, 32.4, 29.7, 28.0, 14.8; **IR** (KBr, cm⁻¹) υ max 3302, 2925, 2853, 1713, 1512, 1397, 1250, 1046, 748. $[\alpha]_D^{20} = +4.21$ (c=2.87 CHCl₃). **HRMS** (**ESI-TOF**): Exact mass calcd for C₃₃H₂₉BrN₄O₄H [M + H]⁺: 625.1441, Found: 625.1445.

4-(4-Bromo-benzylidene)-3-[1-(4-methyl-benzyl)-1H-[1,2,3]triazol-4-ylmethyl]-1phenyl-3-prop-2-ynyl-pyrrolidine-2,5-dione

Compound **3g** was obtained in 80% yield as white solid, 75% *ee* determined by HPLC analysis (Chiralcel IB-H column, hexane: *i*-PrOH 70 : 30, 1.0 ml/min, 254nm) . Retention time: t_{minor} = 16.54, t_{major} = 41.31. ¹H NMR (400 MHz, CDCl₃) δ 7.87 (s, 1 H), 7.55 (d, J=8.4Hz, 2 H), 7.39-7.36 (m, 5 H), 7.14 (d, J=8.0Hz, 2 H), 7.10-7.07 (m, 3 H), 7.05 (s, 1 H), 7.03 (s, 1 H), 5.37 (dd, J=14.8, 28.4Hz, 2 H), 3.22 (d, J=14.4Hz, 1 H), 2.99-2.87 (m, 2 H), 2.56 (dd, J=2.4, 16.4Hz, 1 H), 2.34 (s, 3 H), 2.63 (q, J=2.8Hz, 1 H), ; ¹³C NMR (100 MHz, CDCl₃) δ 177.3, 168.6, 138.7, 137.9, 133.3, 132.0, 131.9, 131.6, 131.1, 129.9, 129.8, 129.1, 128.6, 128.0, 126.5, 123.4, 121.7, 78.1, 72.4, 53.9,

51.5, 32.0, 27.4, 21.2; **IR** (KBr, cm⁻¹) υ_{max} 3458, 2922, 1711, 1641, 1486, 1391, 1275, 1148, 750. [α]_D²⁰= +7.19 (c=3.00 CHCl₃). **HRMS** (**ESI-TOF**): Exact mass calcd for C₃₁H₂₅BrN₄O₂H [M + H]⁺: 565.1232, Found: 565.1234.

Compound **3h** was obtained in 81% yield as white solid, 68% *ee* determined by HPLC analysis (Chiralcel IB-H column, hexane: *i*-PrOH 70 : 30, 1.0 ml/min, 254nm). Retention time: t_{minor} = 15.72, t_{major} = 14.54. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (s, 1 H), 7.67 (d, J=7.2Hz, 1 H), 7.61 (d, J=7.6Hz, 1 H), 7.52-7.48 (m, 2 H), 7.39 (t, J=7.2Hz, 1 H), 7.30-7.25 (m, 3 H), 7.21 (d, J=8.4Hz, 1 H), 7.14-7.11 (m, 3 H), 7.07 (d, J=8.0Hz, 2 H), 5.36 (dd, J=14.4, 20.4Hz, 2 H), 3.22 (d, J=14.8Hz, 1 H), 2.93-2.84 (m, 2 H), 2.58 (dd, J=2.4, 16.4Hz, 1 H), 2.32 (s, 3 H), 2.11 (t, J=2.4Hz, 1 H), ; ¹³C NMR (100 MHz, CDCl₃) δ 176.8, 168.1, 138.6, 138.2, 134.7, 133.4, 132.9, 131.7, 130.6, 130.3, 129.8, 129.6, 128.0, 127.3, 125.3, 123.5, 122.3, 122.0, 78.1, 72.5, 53.9, 51.1, 32.3, 28.2, 21.1; **IR** (KBr, cm⁻¹) υ max 3430, 2989, 1716, 1478, 1384, 1276, 750. $[\alpha]_D^{20}$ = +3.32 (c=4.37 CHCl₃). **HRMS (ESI-TOF**): Exact mass calcd for C₃₁H₂₄Br₂N₄O₂H [M + H]⁺: 643.0320, Found: 643.0339.

4-(4-Chloro-benzylidene)-1-(4-ethoxy-phenyl)-3-[1-(4-methyl-benzyl)-1H-[1,2,3]t riazol-4-ylmethyl]-3-prop-2-ynyl-pyrrolidine-2,5-dione

Compound **3i** was obtained in 62% yield as white solid, 85% *ee* determined by HPLC analysis (Chiralcel IB-H column, hexane: *i*-PrOH 70 : 30, 1.0 ml/min, 254nm) . Retention time: t_{minor} = 40.67, t_{major} = 58.32. ¹**H NMR** (400 MHz, CDCl₃) δ 7.88 (s, 1 H), 7.41 (dd, *J*=8.4, 16.4Hz, 4 H), 7.24 (t, *J*=8.0Hz, 1 H), 7.15 (d, *J*=7.6Hz, 1 H), 7.04 (s, 1 H), 6.98-6.96 (m, 4 H), 6.87 (d, *J*=9.2Hz, 2 H), 5.37 (dd, *J*=14.8, 25.6Hz, 2 H), 4.03 (q, 7.2Hz, 2 H), 3.23 (d, *J*=14.4Hz, 1 H), 2.99-2.87 (m, 2 H), 2.55 (dd, *J*=2.4, 16.4Hz, 1 H), 2.30 (s, 3 H), 2.06 (s, 1 H), 1.42 (t, *J*=7.2Hz, 3 H), ; ¹³C NMR (100 MHz, CDCl₃) δ 177.5, 168.9, 159.0, 142.3, 139.1, 137.6, 135.1, 134.6, 132.8, 131.2, 129.7, 128.9, 128.6, 127.6, 125.0, 121.8, 115.0, 78.1, 72.0, 63.7, 54.0, 51.4, 32.0, 27.4, 21.3, 14.8; **IR** (KBr, cm⁻¹) υ max 3282, 2972, 1713, 1510, 1395, 1248, 1165, 1046, 750. $[\alpha]_D^{20}$ = +6.21 (c=4.33 CHCl₃). **HRMS (ESI-TOF**): Exact mass calcd for $C_{33}H_{29}CIN_4O_3H [M + H]^+$: 565.2001, Found: 565.2001.

4-(2-Bromo-benzylidene)-1-(4-ethoxy-phenyl)-3-[1-(3-methyl-benzyl)-1H-[1,2,3]t riazol-4-ylmethyl]-3-prop-2-ynyl-pyrrolidine-2,5-dione

Compound **3j** was obtained in 66% yield as white solid, 83% *ee* determined by HPLC analysis (Chiralcel IB-H column, hexane: *i*-PrOH 70 : 30, 1.0 ml/min, 254nm) . Retention time: t_{minor} = 27.61, t_{major} = 19.11. ¹H NMR (400 MHz, CDCl₃) δ 7.79 (s, 1 H), 7.67 (d, *J*=7.6Hz, 1 H), 7.53(d, 1 H), 7.32 (t, *J*=7.6Hz, 1 H), 7.21-7.13 (m, 2 H), 7.06 (d, *J*=7.6Hz, 1 H), 6.98 (d, *J*=7.2Hz, 2 H), 6.90 (s, 2 H), 6.82 (d, *J*=8.8Hz, 2 H), 5.31 (dd, *J*=14.8, 33.2Hz, 2 H), 3.96 (q, *J*=6.8Hz, 2 H), 3.15 (d, *J*=14.8Hz, 1 H), 2.85-2.79 (m, 2 H), 2.48 (dd, J=2.4, 16.4Hz, 1 H), 2.22 (s, 3 H), 2.01 (q, *J*=2.4Hz, 1 H), 1.34 (q, *J*=6.8Hz, 3 H), ; ¹³C NMR (100 MHz, CDCl₃) δ 177.4, 168.7, 158.9, 142.1, 139.1, 137.7, 134.9, 134.5, 132.9, 131.8, 130.5, 129.8, 129.5, 129.0, 128.7, 127.7, 127.3, 125.1, 124.6, 123.5, 122.1, 114.9, 78.3, 72.3, 63.7, 54.1, 51.0, 32.4, 28.0,

21.3, 14.8; **IR** (KBr, cm⁻¹) υ_{max} 3304, 2977, 1708, 1651, 1514, 1396, 1248, 1168, 1049, 758. [α]_D²⁰= +4.15 (c=2.67 CHCl₃). **HRMS** (**ESI-TOF**): Exact mass calcd for C₃₃H₂₉BrN₄O₃H [M + H]⁺: 609.1494, Found: 609.1496.

1-(4-Ethoxy-phenyl)-4-(2-fluoro-benzylidene)-3-[1-(2-methoxy-benzyl)-1H-[1,2,3] triazol-4-ylmethyl]-3-prop-2-ynyl-pyrrolidine-2,5-dione

Compound **3k** was obtained in 70% yield as white solid, 79% *ee* determined by HPLC analysis (Chiralcel IB-H column, hexane: *i*-PrOH 70 : 30, 1.0 ml/min, 254nm). Retention time: t_{minor} = 32.90, t_{major} = 24.63. ¹**H NMR** (400 MHz, CDCl₃) δ 7.82 (s, 1 H), 7.51 (q, *J*=7.6Hz, 1 H), 7.33 (dd, *J*=7.0, 13.6Hz, 1 H), 7.16 (q, *J*=7.6Hz, 2 H), 7.06-7.04 (m 2 H), 6.83-6.80 (m, 3 H), 6.66 (q., *J*=7.6Hz, 2 H), 5.32 (dd, *J*=14.8, 34.0Hz, 2 H), 3.96 (q, *J*=6.8Hz, 2 H), 3.66 (s, 3 H), 3.18 (d, *J*=14.8Hz, 1 H), 2.83 (d, 14.4Hz, 2 H), 2.49 (dd, *J*=2.4, 16.4Hz, 1 H), 1.99 (s, 1 H), 1.34 (q, *J*=6.8Hz, 3 H), ; ¹³C NMR (100 MHz, CDCl₃) δ 177.3, 168.6, 160.2, 159.9 (d, *J* = 247.2 Hz), 159.0, 142.2, 136.1, 133.1, 132.1, 131.2 (d, *J* = 8.0 Hz), 130.2, 129.8 (d, *J* = 8.8 Hz), 127.7, 124.5, 124.3 (d, *J* = 3.6 Hz), 122.2 (d, J = 15.0Hz), 122.1, 120.1, 115.9 (d, *J* = 21.9 Hz), 115.0, 114.6, 113.2, 78.1, 71.9, 63.7, 55.3, 54.0, 51.4, 32.1, 27.3, 14.8; ¹⁹F NMR (471 MHz,) δ -110.84 ppm. **IR** (KBr, cm⁻¹) ν_{max} 3301, 2972, 1709, 1513. 1396, 1248, 1168, 1049, 758. [α]_D²⁰= +3.42 (c=2.67 CHCl₃). **HRMS (ESI-TOF**): Exact mass calcd for C₃₃H₂₉FN₄O₄H [M + H]⁺: 565.2245, Found: 565.2245.

1-(4-Ethoxy-phenyl)-4-(2-methyl-benzylidene)-3-[1-(3-methyl-benzyl)-1H-[1,2,3]t riazol-4-ylmethyl]-3-prop-2-ynyl-pyrrolidine-2,5-dione

Compound **3I** was obtained in 70% yield as white solid, 67% *ee* determined by HPLC analysis (Chiralcel IB-H column, hexane: i-PrOH 70 : 30, 1.0 ml/min, 254nm) . Retention time: t_{minor} = 23.43, t_{major} = 15.12. ¹H NMR (400 MHz, CDCl₃) δ 7.92 (s, 1 H), 7.31 (t, *J*=7.2Hz, 1 H), 7.26-7.22 (m, 4 H), 7.19-7.15 (m, 2 H), 7.03 (d, *J*=8.4Hz, 2 H), 6.97 (s, 1 H), 6.89 (d, *J*=8.4Hz, 2 H), 5.39 (dd, *J*=15.2, 20.4Hz, 2 H), 4.04 (q, *J*=6.8Hz, 2 H), 3.26 (d, *J*=2.8Hz, 1 H), 3.00 (t, *J*=2.8Hz, 1 H), 2.92 (d, *J*=16.0Hz, 1 H), 2.66 (d, *J*=15.6Hz, 1 H), 2.37 (s, 3 H), 2.31 (s, 3 H), 2.05 (s, 1 H), 1.43 (q, *J*=6.8Hz, 3 H), ; ¹³C NMR (100 MHz, CDCl₃) δ 175.4, 167.0, 156.6, 136.9, 136.8, 136.0, 132.3, 131.9, 127.9, 127.5, 127.2, 126.7, 126.2, 125.4, 123.0, 122.6, 122.3, 112.6, 76.0, 69.4, 61.4, 51.8, 49.0, 29.5, 25.1, 19.0, 12.5; IR (KBr, cm⁻¹) υ_{max} 3413, 1773, 1638, 1559, 1275, 1261, 764, 750. [α]_D²⁰= +29.16 (c=13.7 CHCl₃). HRMS (ESI-TOF): Exact mass calcd for C₃₄H₃₂N₄O₃Na [M + Na]⁺: 567.2372, Found: 567.2367.

4-(2,4-Dichloro-benzylidene)-1-(4-ethoxy-phenyl)-3-[1-(3-methyl-benzyl)-1H-[1,2, 3]triazol-4-ylmethyl]-3-prop-2-ynyl-pyrrolidine-2,5-dione

Compound **3k** was obtained in 69% yield as yellow solid, 81% *ee* determined by HPLC analysis (Chiralcel IB-H column, hexane: *i*-PrOH 70 : 30, 1.0 ml/min, 254nm). Retention time: t_{minor} = 18.31, t_{major} = 23.80. ¹H NMR (400 MHz, CDCl₃) δ 7.82 (s, 1 H), 7.76 (d, *J*=8.4Hz, 1 H), 7.42 (s, 1 H), 7.32 (d, *J*=7.6Hz, 1 H), 7.22-7.19 (m, 1 H), 7.12 (d, *J*=7.6Hz, 2 H), 6.98-6.95 (m, 4 H), 6.85 (d, *J*=8.8Hz, 2 H), 5.36 (dd, *J*=14.8, 38.0Hz, 2 H), 3.99 (q, *J*=7.2Hz, 2 H), 3.22 (d, *J*=9.2Hz, 1 H), 2.87 (d, *J*=15.6Hz, 2 H), 2.47 (d, *J*=16.4Hz, 1 H), 2.27 (s, 3 H), 2.04 (s, 3 H), 1.39 (q, *J*=7.2Hz, 3 H), ; ¹³C

NMR (100 MHz, CDCl₃) δ 174.9, 166.1, 156.6, 136.8, 133.4, 132.6, 132.4, 132.4, 132.1, 130.4, 129.2, 128.3, 127.3, 127.2, 126.7, 126.3, 125.3, 124.9, 122.7, 122.0, 112.6, 75.6, 70.0, 61.4, 51.8, 48.8, 30.2, 25.3, 19.0, 12.4; **IR** (KBr, cm⁻¹) υ max 3413, 1714, 1512, 1298, 1275, 764, 750. [α]_D²⁰= +2.58 (c=1.83 CHCl₃). **HRMS** (**ESI-TOF**): Exact mass calcd for C₃₃H₂₈Cl₂N₄O₃Na [M + H]⁺: 621.1436, Found: 621.1431.

4-(2-Bromo-benzylidene)-1-(4-tert-butyl-phenyl)-3-[1-(3-methyl-benzyl)-1H-[1,2, 3]triazol-4-ylmethyl]-3-prop-2-ynyl-pyrrolidine-2,5-dione

3n

Compound **3n** was obtained in 74% yield as yellow solid, 90% *ee* determined by HPLC analysis (Chiralcel IA-H column, hexane: *i*-PrOH 80 : 20, 0.6 ml/min, 254nm). Retention time: t_{minor} = 36.05, t_{major} = 33.07. ¹H NMR (400 MHz, CDCl₃) δ 7.82 (s, 1 H), 7.69 (d, *J*=7.6Hz, 1 H), 7.54 (d, *J*=8.0Hz, 1 H), 7.33 (d, *J*=8.8Hz, 3 H), 7.21-7.16 (m, 1 H), 7.13 (d, *J*=8.0Hz, 1 H), 7.10-7.05 (m, 2 H), 7.00 (d, *J*=8.4Hz, 2 H), 6.91 (s, 2 H), 5.31 (dd, *J*=14.8, 34.0Hz, 2 H), 3.16 (d, *J*=14.8Hz, 1 H), 2.86-2.80 (m, 2 H), 2.49 (dd, *J*=2.4, 16.4Hz, 1 H), 2.21 (s, 3 H), 2.00 (s, 1 H), 1.25 (s, 9 H), ; ¹³C NMR (100 MHz, CDCl₃) δ 177.2, 168.6, 151.5, 142.1, 139.1, 138.0, 134.8, 134.5, 132.9, 131.7, 130.6, 129.5, 129.0, 128.7, 127.4, 126.1, 125.9, 125.1, 123.5, 122.2, 78.2, 72.3, 54.1, 51.1, 34.7, 32.4, 31.3, 28.0, 21.3; **IR** (KBr, cm⁻¹) υ max 3413, 1713, 1275, 1260, 764, 750, 620. [α]_D²⁰= +2.59 (c=2.10 CHCl₃). **HRMS (ESI-TOF**): Exact mass calcd for C₃₅H₃₃BrN₄O₂Na [M + Na]⁺: 643.1685, Found: 643.1679.

4-(2-Methoxy-benzylidene)-3-[1-(3-methyl-benzyl)-1H-[1,2,3]triazol-4-ylmethyl]-1-phenyl-3-prop-2-ynyl-pyrrolidine-2,5-dione

Compound **30** was obtained in 70% yield as white solid, 70% *ee* determined by HPLC analysis (Chiralcel IA-H column, hexane: *i*-PrOH 70 : 30, 1.0 ml/min, 254nm) . Retention time: t_{minor} = 16.61, t_{major} = 14.07. ¹H NMR (400 MHz, CDCl₃) δ 7.96 (s, 1 H), 7.43 (d, *J*=7.6Hz, 1 H), 7.33-7.27 (m, 4 H), 7.15-7.12 (m, 2 H), 7.06 (q, *J*=6.0Hz, 3 H), 6.95 (q, *J*=7.6Hz, 1 H), 6.88 (s, 2 H), 6.84 (d, *J*=8.0Hz, 1 H), 5.33 (dd, *J*=14.9, 40.4Hz, 2 H), 3.60 (s, 3 H), 3.17 (d, *J*=14.4Hz, 1 H), 2.89-2.81 (m, 2 H), 2.56 (dd, *J*=2.4, 16.4Hz, 1 H), 2.20 (s, 3 H), 1.98 (s, 1 H), ; ¹³C NMR (100 MHz, CDCl₃) δ 177.1, 168.8, 157.3,142.4, 139.1, 136.5, 134.7, 132.1, 130.9, 130.7, 129.4, 129.1, 129.0, 129.0, 128.5, 128.4, 126.6, 124.8, 123.1, 122.3, 120.5, 110.9, 78.5, 71.7, 55.2, 54.0, 51.5, 32.2, 27.6, 21.2; **IR** (KBr, cm⁻¹) υ_{max} 3552, 3481, 3143, 1275, 1260, 764, 750, 621. $[\alpha]_D^{20}$ = -2.26 (c=1.46 CHCl₃). **HRMS (ESI-TOF**): Exact mass calcd for C₃₂H₂₈N₄O₃Na [M + Na]⁺: 539.2059, Found: 539.2054.

4-(2-Bromo-benzylidene)-1-(4-tert-butyl-phenyl)-3-[1-(4-methyl-benzyl)-1H-[1,2, 3]triazol-4-ylmethyl]-3-prop-2-ynyl-pyrrolidine-2,5-dione

Compound **3p** was obtained in 70% yield as white solid, 81% *ee* determined by HPLC analysis (Chiralcel IA-H column, hexane: *i*-PrOH 70 : 30, 1.0 ml/min, 254nm).

Retention time: t_{minor} = 13.00, t_{major} = 15.21. ¹H NMR (400 MHz, CDCl₃) δ 7.92 (s, 1 H), 7.82 (d, *J*=3.2Hz, 1 H), 7.64 (d, *J*=6.0Hz, 1 H), 7.44 (d, *J*=6.4Hz 3 H), 7.31-7.26 (m, 1 H), 7.16 (d, *J*=6.0Hz, 3 H), 7.10 (d, *J*=6.0Hz 4 H), 5.42 (dd, *J*=11.6, 44.8Hz, 2 H), 3.30 (m, 1 H), 2.95-2.92 (m, 2 H), 2.59 (d, *J*=12.0Hz, 2 H), 2.37 (s, 3 H), 2.06 (s, 1 H), 1.35 (s, 9 H), ; ¹³C NMR (100 MHz, CDCl₃) δ 177.3, 168.6, 151.6, 138.7, 138.1, 134.8, 132.9, 131.7, 131.5, 130.6, 129.8, 128.1, 127.4, 126.1, 125.9, 123.5, 78.2, 72.3, 60.4, 34.8, 31.3, 28.0, 21.3, 14.2, 1.4; **IR** (KBr, cm⁻¹) υ_{max} 3413, 1713, 1275, 1260, 764, 750. [α]_D²⁰= +2.17 (c=1.64 CHCl₃). **HRMS (ESI-TOF**): Exact mass calcd for C₃₅H₃₃BrN₄O₂Na [M + Na]⁺: 643.1685, Found: 643.1688.

3,4,5-triacetoxy-6-{4-[1-(4-ethoxy-phenyl)-4-(2-methyl-benzylidene)-2,5-dioxo-3-prop-2-ynyl-pyrrolidin-3-ylmethyl]-[1,2,3]triazol-1-yl}-tetrahydro-pyran-2-ylmethyl ester (7)

Product **7** was obtained in 61% yield as white solid, 32% *ee* determined by HPLC analysis (Chiralcel IB-H column, hexane: *i*-PrOH 70 : 30, 1.0 ml/min, 254nm) . Retention time: t_{minor} = 22.43, t_{major} = 30.29. ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J=11.2Hz, 1 H), 7.43 (s, 1 H), 7.41-7.37 (m, 1 H), 7.34 (t, J=6.0Hz, 2 H), 7.28-7.24 (m, 1 H), 7.23 (s, 1 H), 7.21-7.19 (m, 2 H), 6.98-6.94 (m, 2 H), 5.82 (dd, J=8.8,16.8Hz, 1 H), 5.40-5.37 (m, 2 H), 5.24-5.18 (m, 1 H), 4.35-4.27 (m, 1 H), 4.14-4.11 (m, 1 H), 4.08-4.03 (m, 2 H), 4.02-3.97 (m, 1 H), 3.29 (dd, J=6.4,14.8Hz, 1 H), 3.00-2.91 (m, 2 H), 2.77-2.63 m, 1 H), 2.44 (d, J=8.8Hz, 2 H), 2.11 (s, 1 H), 2.08-2.01 (m, 12 H), 1.81 (s, 2 H), 1.78 (s, 1 H), 1.42 (t, J=6.8Hz, 3 H), ; ¹³C NMR (100 MHz, CDCl₃) δ 177.6, 170.5, 169.8, 169.4, 169.3, 169.2, 169.0, 159.0, 143.0, 139.4, 138.9, 138.4, 134.3, 138.9, 138.4, 130.0, 128.9, 128.6, 127.9, 127.8, 125.3,

125.2, 124.7, 120.3, 114.9, 85.7, 85.6, 78.3, 75.2, 72.6, 71.8, 70.1, 67.8, 67.7, 63.7, 61.7, 51.2, 50.8, 31.7, 31.0, 28.5, 27.5, 21.5, 20.6, 20.5, 20.0, 14.8.

References

[1] T. Song, L. S. Zheng, F. Ye, W. H. Deng, Y. L Wei, K. Z. Jiang, L. W. Xu, Adv. Synth. Catal. 2014, 356, 1708.

[2] T. Song, L. Li, W. Zhou, Z. J. Zheng, Y. Deng, Z. Xu, L.W. Xu, *Chem. Eur. J.*2015, 21, 554-558.

Table S1-S5 and Scheme S1.

Scheme S1. Ligand effect on the copper-catalyzed azide-alkyne cycloaddition.

Table S1. Asymmetric azide-alkyne cycloaddition catalyzed by various copper saltsin the presence of Tao-Phos.

Entry	copper	Yield(%) ^[a]	Ee(%) ^[b]
1	CuCl	28	-5 ^[c]
2	CuBr	66	10
3	CuI	58	8
4	CuBr ₂	41	0
5	Cu(MeCN) ₄ PF ₆	32	0
6	CuF ₂	65	90

[a] Isolated yield. [b] Determined by chiral HPLC. [c] The absolute configuration of this product is in the opposite to that of the others by HPLC analysis. Although the configurations of products **3** are not formally proved by X-ray analysis, the absolute configurations of the chiral monotriazole products **3** could be referred to previous report⁷ by HPLC for the determination of chiral product **5** of Table 2 (see Text).

Table S2. The effect of solvents on the CuF_2 -Tao-Phos (L1) catalyzed azide-alkyne click cycloaddition in the presence of Tao-Phos.

[a] Isolated yield. [b] Determined by chiral HPLC.

Table S3. The effect of base on the CuF_2 -Tao-Phos (L1) catalyzed azide-alkyne click cycloaddition in the presence of Tao-Phos.

O N O 1a	CI	CuF ₂ 20% L1 20% MeCN 0°C Base 25%	
entry	Base	Yield(%) ^[a]	Ee(%) ^[b]
1	K ₂ CO ₃	n.r.	-
2	K ₃ PO ₄	n.r.	-
3	DMEDA	n.r.	-
4	DIPEA	n.r.	-
5	Et ₃ N	65	90

[a] Isolated yield. [b] Determined by chiral HPLC.

Table S4. The effect of fluoride anion or cation on the desymmetrization of bisalkyne1a with 2b.^[a]

	F $+$ N_3 b $2bCl$	CuF ₂ (20 mol%) Tao-Phos (20 mol%) Et ₃ N (25 mol%) F-containing additive <i>Ne</i> (20 mol%) CH ₃ CN, 0 °C, 24 h	O O O O O O O O O O O O O O O O O O O
F S N	$ \begin{array}{c} BF_4 \\ N \\ N \\ F \end{array} $ $ \begin{array}{c} BF_4 \\ BF_4 \end{array} $		Me HF N etc.
DAST	Selectfluor	NFSI	Et ₃ N-HF
Entry	Additive ^[a]	Yield (%) ^[b]	<i>ee</i> (%) ^[c]
1	-	75	83
2	MgF_2	76	84
3	CaF ₂	76	79
4	BaF ₂	<5	-
5	DAST	<5	-
6	Selectfluor	<5	-
7	NFSI	<5	-
8	Et ₃ N HF ^[d]	0	-

[a] The additive was used to change the effect of fluoride anion on the catalytic performance of copper-catalyzed Huisgen cycloaddition reaction. [b] Isolated yields. [c] The ee value was determined by chiral HPLC. [d] The use of Et₃N HF instead of Et₃N in this reaction.

Table S5. Desymmetrization of maleimide-derived bisalkynes via copper-catalyzed

 Huisgen cycloaddition.^[a]

$R^{1} = H, R = Et, Ar = Ph; $ $Structure R = Et, Ar = Ph; $ Str						
Entry	Produc	ct Proc	Procedure A ^[ref.2]		Procedure B ^[a]	
		Yield	l (%) ^[b] Ee	(%) ^[c] Yield	(%) ^[b] Ee (%)	[c]
1	5a	68	87	68	56	+31
2	5b	69	74	65	91	-17
3	5c	71	82	70	75	+7
4	5d	74	76	74	65	+11
5	5e	72	78	68	65	+13
6	5f	71	80	70	51	+29
7	5g	69	70	65	47	+23
8	5h	72	83	75	55	+28
9	5i	74	80	67	54	+26
10	5j	70	77	75	64	+13
11	5k	69	73	75	81	-8
12	51	72	74	63	69	+5

[a] In this work, all reaction is carried with CuF_2 (20 mol%), Tao-Phos (20 mol%), Et₃N (25 mol%) in CH₃CN at 0 °C. [b] Isolated yield. [c] Determined by chiral HPLC.

Figure S1. Negative NLE in the CuAAC of 1d using Tao-Phos.

Figure S2. ESI(+)-MS analysis for the mixture of only CuF_2 and

Tao-Phos in CH₃CN

Figure S2-a: (+)-ESI-MS

ESI-xulw140904-st-1_01 #11-16 RT: 0.28-0.42 AV: 6 NL: 1.46E6 T: + c ESI Full ms [100.00-2000.00]

Figure S2-b: (-)-ESI-MS

Figure S3. ESI(+)-MS analysis for the mixture of CuF₂, Et₃N, alkyne,

and Tao-Phos in CH₃CN

If the M represented the intermdeaite **I** of Figure 5 (m/z 1192.1, see Figure 5, $Cu+L+Et_3N$). And the ion peak at m/z 1214.6/1215.6 and m/z 1318.3/1319.1 could be anylized as the $[M+Na]^+$ (calculated m/z is 1215.4) and multinuclear copper complex as $[Cu_3(L)(Et_3N)(alkyne)]$ (calculated m/z is 1319.3).

Figure S4. ESI(+)-MS analysis for the reaction mixture of CuF_2 , Et_3N ,

alkyne, azide, and Tao-Phos in CH₃CN

The major ion peak at m/z 1302.6 provided a direct evidence for the intermediate **III** of Figure 5 because the caculated m/z of $Cu_2L(azide)(alkyne)$ is 1302.3, in which the L (Tao-Phos) is oxidized to phosphine oxide during the ESI-MS analysis. Therefore the ESI-MS analysis provided a powerful evidence for the mechanistic procedure showed in Figure 5.

Figure S5. ESI(+)-MS analysis for the reaction mixture of CuF_2 , Et_3N ,

and Tao-Phos in CH₃CN

About the ion peak at m/z 750.0, it is probably aroused from the in-situ oxidized Tao-Phos and related copper complex in CH₃CN during the ESI-MS analysis. Similarly, the monomer and dimer of oxidized Tao-Phos was also detected respectively in this case (m/z = 6481 and 1296.7), which also provided indirect evidence for the highly active copper/Tao-Phos complex in the presence of Et₃N.

Figure S6. ESI(+)-MS analysis for the reaction mixture of CuF_2 , Et₃N,

azide, and Tao-Phos in CH₃CN

About the ion peak at m/z 750.0, it is probably aroused from the in-situ oxidized Tao-Phos and related oxidized copper complex was also detected as m/z 1358.8 during the ESI-MS analysis, which also provided indirect evidence for the highly active copper/Tao-Phos complex in the presence of Et_3N and azide substrate.

Figure S7. ESI(+)-MS analysis for the reaction mixture of CuF_2 , azide, and Tao-Phos in CH_3CN

In this case, two major ion peaks at m/z 1280.4 and m/z 1400.8 could be detected in the presence of CuF₂, Tao-Phos, and benzylic azide, in which two possible intermediates could be proposed as above structures.

S-4.NMR Spectra of the substrates 1

S-5. NMR Spectra of the desired products 3

45

4.0

8.0

ppm (t1)

7.0

6.**0**

5.0

3.0

2.0

1.0

0.0

S-6. HPLC Spectra of the new products 3 (Method A)

#	Time	Area	Height	Width	Symmetry	Area%
1	18.786	2002.9	30.2	0.8924	0.394	53.552
2	24.835	1737.2	24.5	1.184	0.462	46.448

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %
1	28.615	1146.1	19.3	0.856	0.622	49.959
2	38.896	1148	14.1	1.0233	0.593	50.041

#	Time	Area	Height	Width	Symmetry	Area%
1	28.615	1146.1	19.3	0.856	0.622	49.959
2	38.896	1148	14.1	1.0233	0.593	50.041

#	Time	Area	Height	Width	Symmetry	Area%
1	30.119	48.3	7.9E-1	1.0211	0.658	8.321
2	41.43	532.3	6.2	1.0133	0.697	91.679

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %
1	17.161	1334.3	32.1	0.6088	0.525	49.820
2	22.365	1344	24.4	0.7958	0.49	50.180

#	Time	Area	Height	Width	Symmetry	Area%
1	17.161	1334.3	32.1	0.6088	0.525	49.820
2	22.365	1344	24.4	0.7958	0.49	50.180

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %
1	20.186	4071.1	58.6	0.9982	0.55	90.542
2	27.613	425.2	4.7	1.512	0.591	9.458

#	Time	Area	Height	Width	Symmetry	Area%
1	20.186	4071.1	58.6	0.9982	0.55	90.542
2	27.613	425.2	4.7	1.512	0.591	9.458

	X.针信息
LC-文件	CMY10290001BR.D
文件路径	D:\EXAMPLES\CMY\BXF 2014-10-29 16-44-36\
日期	29-0ct-14, 17:16:21
样品	cmy10290001br
样品信息	
条形码	
操作者	cmy
方法	BXF-SXYH.M
分析时间	30 min
采样频率	0.0067 min (0.402 sec), 4501 数据点

 							_
#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %	
1	19.687	1094	21.7	0.6672	0.604	49.161	
2	24.755	1131.3	17.3	0.7767	0.548	50.839	
			•				

#	Time	Area	Height	Width	Symmetry	Area%
1	19.687	1094	21.7	0.6672	0.604	49.161
2	24.755	1131.3	17.3	0.7767	0.548	50.839

	大口间心	
LC·文件	CMY-1028-003.D	
文件路径	D:\EXAMPLES\CMY\BXF 2014-10-28 19-55-47\	
日期	28-Oct-14, 19:56:37	
样品	cmy-1028-003	
样品信息		
条形码		
操作者	cmy	
方法	BXF-SXYH.M	
分析时间	32.313 min	
采样频率	0.0067 min (0.402 sec), 4848 数据点	

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %
1	19.064	5979.7	118	0.7391	0.429	98.509
2	25.013	90.5	1.2	1.2544	1.072	1.491

#	Time	Area	Height	Width	Symmetry	Area%
1	19.064	5979.7	118	0.7391	0.429	98.509
2	25.013	90.5	1.2	1.2544	1.072	1.491

#	Time	Area	Height	Width	Symmetry	Area%
1	22.995	2605.3	38.2	1.1357	0.485	51.729
2	30.374	2431.2	27.8	1.0314	0.51	48.271

#	Time	Area	Height	Width	Symmetry	Area%
1	24.75	6968.3	87.6	1.3251	0.44	91.147
2	34.011	676.8	6.5	1.7423	0.603	8.853

LC·文件	ST-3-4.D
文件路径	D:\EXAMPLES\ST3\BXF 2014-11-15 11-25-16\
日期	15-Nov-14, 13:03:57
样品	st-3-4
样品信息	
条形码	
操作者	cyw
方法	BXF-SXYH.M
分析时间	40 min
采样频率	0.0067 min (0.402 sec), 6001 数据点

	#	时间	単面枳	咩 尚	単革	对称因子	��面枳 る	
	1	24.555	393.1	5.4	1.2081	0.509	50.253	
	2	33.02	389.1	4	1.6073	0.478	49.747	
				·				
								_

#	Time	Area	Height	Width	Symmetry	Area%
1	24.555	393.1	5.4	1.2081	0.509	50.253
2	33.02	389.1	4	1.6073	0.478	49.747

Π	TIME	Alta	meight	vviutii	Symmetry	Alca /0
1	23.701	13195.5	190.7	1.1532	0.442	93.531
2	32.739	912.7	10	1.5243	0.572	6.489

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %
1	15.433	1597	37	0.6269	0.459	50.834
2	41.869	1544.6	7	3.6955	0.316	49.166

#	Time	Area	Height	Width	Symmetry	Area%
1	15.433	1597	37	0.6269	0.459	50.834
2	41.869	1544.6	7	3.6955	0.316	49.166

#	Time	Area	Height	Width	Symmetry	Area%
1	16.544	861.8	19	0.5443	0.626	12.130
2	41.313	6243.3	23.2	4.4996	0.249	87.870

	文件信息
LC·文件	101-2.D
文件路径	D:\EXAMPLES\ST3\BXF 2014-10-12 09-44-19\
日期	12-Oct-14, 12:14:19
样品	101-2
样品信息	
条形码	
操作者	cyw
方法	BXF-SXYH.M
分析时间	46.547 min
采样频率	0.0067 min (0.402 sec), 6983 数据点

#	Time	AreaHeightWidthSymmetry		Area%			
1	13.695	3827.7	148.5	0.4295	0.711	48.012	
2	14.522	4144.7	142.1	0.486	0.701	51.988	

#	Time	Time Area Heigh		Width	Symmetry	Area%	
1	14.537	8878.2	290.1	0.4671	0.58	83.716	
2	15.721	1727	47.7	0.5283	0.73	16.284	

#	Time	Area	Height	ght Width Symmetry		Area%	
1	39.568	2377.6	20.1	1.9763	0.4	49.366	
2	58.689	2438.7	7	5.8193	0.265	50.634	

#	Time Area		Height Width		Symmetry	Area%	
1	40.672	195.9	1.5	2.1087	0.636	7.340	
2	58.323	2473.6	7.3	5.6515	0.278	92.660	

LC·文件	ST-3-1.D
文件路径	D:\EXAMPLES\ST3\BXF 2014-11-15 11-25-16\
日期	15-Nov-14, 12:23:06
样品	st-3-1
样品信息	
条形码	
操作者	cyw
方法	BXF-SXYH.M
分析时间	39.993 min
采样频率	0.0067 min (0.402 sec), 6000 数据点

Br

#	Time	Area	Height	Width	Symmetry	Area%
1	19.692	1260.2	23.2	0.9041	0.584	48.735
2	27.835	1325.6	17.6	1.0187	0187 0.552	

#	Time	ne Area Height Width Syn		Symmetry	Area%	
1	19.111	12405.5	239.2	0.7631	0.43	91.680
2	27.605	1125.8	16.3	0.8135	0.691	8.320

_	Ŧ	时月	鮮面枳	唯品	単克	对称因于	鮮面枳 る
	1	23.808	954.9	13.7	0.9492	0.499	50.118
	2	31.1	950.4	10.1	1.1201	0.509	49.882

#	Time	AreaHeightWidthSymmetry		Area%		
1	23.808	954.9	13.7	0.9492	0.499	50.118
2	31.1	950.4	10.1	1.1201	0.509	49.882

	N 3 12 3	畦川枳	唯品	唯克	对称因子	鮮面枳 る
1	24.627	4506.4	53.8	1.396	0.5	89.909
2	32.902	505.8	4.8	1.7459	0.568	10.091

#	Time	Area	Height	Width	Symmetry	Area%	
1	24.627	4506.4	53.8	1.396	0.5	89.909	
2	32.902	505.8	4.8	1.7459	0.568	10.091	

15				20				25				mii	

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %
1	15.132	180.8	4.5	0.6724	0.607	49.910
2	23.302	181.5	2.8	1.0745	0.623	50.090

#	Time	Area	Height	Width	Symmetry	Area%
1	15.132	180.8	4.5	0.6724	0.607	49.910
2	23.302	181.5	2.8	1.0745	0.623	50.090

	#	时	间		峰面积	I	峰高		峰宽		对称因子	峰	面积 %	
	1	15.1	118		1841.1		46.9		0.6543	3	0.54		83.471	
	2	23.	43		364.6		6.3		0.967	5	0.652		16.529	
#	ŧ	Ti	me	A	rea	Heig	ht	W	idth	Sy	mmetry		Area%	
1	L	15	.118	1	841.1	46.9		0.6	5543	0.5	4		83.471	
2	2	23	.43	3	64.6	6.3		0.9	9675	0.6	52		16.529	

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %
1	18.46	240.6	5.4	0.531	0.613	50.742
2	23.687	233.5	3.8	0.7395	0.698	49.258

#	Time	Area	Height	Width	Symmetry	Area%
1	18.46	240.6	5.4	0.531	0.613	50.742
2	23.687	233.5	3.8	0.7395	0.698	49.258

	#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %
[1	18.31	2092.9	46.6	0.7481	0.487	90.495
[2	23.796	219.8	3.8	0.9749	0.555	9.505

#	Time	Area	Height	Width	Symmetry	Area%
1	18.37	2092.9	46.6	0.7481	0.487	90.495
2	23.796	219.8	3.8	0.9749	0.555	9.505

	#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %
[1	33.302	4498	69.8	1.0735	0	49.490
[2	35.965	4590.6	60.3	1.2698	0.522	50.510

#	Time	Area	Height	Width	Symmetry	Area%
1	33.302	4498	69.8	1.0735	0	49.490
2	35.965	4590.6	60.3	1.2698	0.522	50.510

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %
1	33.072	13704.2	207.8	1.099	0	94.954
2	36.051	728.3	10.5	1.1576	0.749	5.046

#	Time	Area	Height	Width	Symmetry	Area%
1	33.072	13704.2	207.8	1.099	0	94.954
2	36.051	728.3	10.5	1.1576	0.749	5.046

		H 7 F9				■単人		对伊哈丁		画快 ~	
	1	14.262	163.9	5.5		0.4982)	0.644	Ľ,	50.206	
	2	16.759	162.5	4.8		0.5695	j	0.718		49.794	
#		Time	Area	Height	W	ïdth	Sy	mmetry		Area%)
1		14.262	163.9	5.5	0.4	4982	0.6	544		50.206	
2		16.759	162.5	4.8	0.:	5695	0.7	718		49.794	

.,	2	4	6 8	10	12 14	18	18	min
	#	时间	峰面积	峰高	峰宽	对称因子	峰面积 2	2
	1	14.074	1924.6	65.3	0.4912	0.59	85.077	
	2	16.608	337.6	9.4	0.5973	0.856	14.923	
#		Time	Area	Height	Width	Symmetr	y A	Area%
# 1		Time 14.074	Area 1924.6	Height 65.3	Width 0.4912	Symmetr 0.59	y A 8	rea% 5.077

#	Time	Area	Height	Width	Symmetry	Area%
1	13.091	175.4	6.6	0.4416	0.656	50.479
2	15.43	172.1	5.8	0.4331	0.697	49.521

S-7. HPLC Spectra of the new products 3 and 5 (Method B)

#	Time	Area	Height	Width	Symmetry	Area%
1	26.365	3212.3	35.4	1.5137	0.418	85.129
2	36.532	561.2	4.7	1.9783	0.578	14.871

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %
1	27.742	240.8	4.3	0.6685	0.694	4.426
2	37.187	5200.4	63.4	1.1923	0.489	95.574

#	Time	Area	Height	Width	Symmetry	Area%
1	27.742	240.8	4.3	0.6685	0.694	4.426
2	37.187	5200.4	63.4	1.1923	0.489	95.574

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %
1	19.199	6421.9	113.9	0.9393	0.398	91.002
2	26.047	635	8.7	1.2098	0.525	8.998

#	Time	Area	Height	Width	Symmetry	Area%
1	19.199	6421.9	113.9	0.9393	0.398	91.002
2	26.047	635	8.7	1.2098	0.525	8.998

#	Time	Area	Height	Width	Symmetry	Area%
1	23.472	3287.3	40.3	1.3605	0.395	95.028
2	30.703	172	1.7	1.6573	0.692	4.972

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %
1	25.593	2957.4	37.9	1.3013	0.452	88.612
2	35.49	380.1	3.8	1.673	0.548	11.388

#	Time	Area	Height	Width	Symmetry	Area%
1	25.593	2957.4	37.9	1.3013	0.452	88.612
2	35.49	380.1	3.8	1.673	0.548	11.388

#	Time	Area	Height	Width	Symmetry	Area%
1	17.166	2589.8	52.3	0.7292	0.427	29.243
2	46.165	6266.2	19.8	5.2731	0.19	70.757

#	Time	Area	Height	Width	Symmetry	Area%
1	15.41	2735.1	85	0.4893	0.569	92.847
2	16.886	210.7	6.7	0.4743	0.647	7.153

时间	峰面积	峰高	峰宽	对称因子	峰面积 %
30.045	450.4	4.4	1.7166	0.593	16.307
48	2311.6	7.4	5.1749	0.266	83.693

#	Time	Area	Height	Width	Symmetry	Area%
1	30.045	450.4	4.4	1.7166	0.593	16.307
2	48	2311.6	7.4	5.1749	0.266	83.693

#	Time	Area	Height	Width	Symmetry	Area%
1	20.644	1857.4	30.6	1.0106	0.476	91.755
2	30.181	166.9	2.3	1.2131	0.589	8.245

#	Time	Area	Height	Width	Symmetry	Area%
1	23.63	5174.2	71.6	1.0291	0.393	88.324
2	31.562	684	7.3	1.1019	0.558	11.676

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %
1	16.682	1098.9	23	0.7975	0.517	89.377
2	26.466	130.6	1.8	1.2038	0.638	10.623

#	Time	Area	Height	Width	Symmetry	Area%
1	16.682	1098.9	23	0.7975	0.517	89.377
2	26.466	130.6	1.8	1.2038	0.638	10.623

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %
1	20.853	1337.1	23.8	0.9366	0.527	88.224
2	27.059	178.5	2.6	1.1578	0.642	11.776

#	Time	Area	Height	Width	Symmetry	Area%
1	20.853	1337.1	23.8	0.9366	0.527	88.224
2	27.059	178.5	2.6	1.1578	0.642	11.776

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %
1	29.203	4164.4	69	1.0055	0	82.617
2	31.123	876.2	12.7	1.1529	0.477	17.383

#	Time	Area	Height	Width	Symmetry	Area%
1	29.203	4164.4	69	1.0055	0	82.617
2	31.123	876.2	12.7	1.1529	0.477	17.383

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %
1	15.8	701.2	17.3	0.5831	0.564	76.440
2	18.964	216.1	4.7	0.6358	0.602	23.560

#	Time	Area	Height	Width	Symmetry	Area%
1	15.8	701.2	17.3	0.5831	0.564	76.440
2	18.694	216.1	4.7	0.6358	0.602	23.560

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %
1	11.151	252.6	8	0.4525	0.628	7.997
2	13.246	2906.6	85.4	0.5113	0.549	92.003

#	Time	Area	Height	Width	Symmetry	Area%
1	11.151	252.6	8	0.4525	0.628	7.997
2	13.246	2906.6	85.4	0.5113	0.549	92.993

15

17.5

20

22.5

25

min

Þ

•						
#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %
1	18.003	736.8	20.6	0.5972	0.839	21.970
2	20.852	2616.8	55.7	0.6976	0.497	78.030

10

7.5

12.5

#	Time	Area	Height	Width	Symmetry	Area%
1	18.003	736.8	20.6	0.5972	0.839	21.970
2	20.852	2616.8	55.7	0.6976	0.497	78.030

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %
1	38.853	3886.4	57.6	1.1242	0.653	95.266
2	40.403	193.1	4.5	0.7167	0	4.734

#	Time	Area	Height	Width	Symmetry	Area%
1	38.853	3886.4	57.6	1.1242	0.653	95.266
2	40.403	193.1	4.5	0.7167	0	4.734

2

#	Time	Area	Height	Width	Symmetry	Area%
1	28.27	547.1	9.3	0.7246	0.84	12.651

1.0755

0.572

51.3

3777.4

32.84

87.349

		-
1	()	n
т	υ	υ

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %
1	24.447	718.4	4.3	2.7601	0.522	17.705
2	39.287	3339.1	11.6	4.7921	0.516	82.295

#	Time	Area	Height	Width	Symmetry	Area%
1	24.447	718.4	4.3	2.7601	0.522	17.705
2	39.287	3339.1	11.6	4.7921	0.516	82.295

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %
1	29.805	885.9	4.7	3.1434	0.507	17.319
2	49.9	4229	10.8	6.5007	0.426	82.681

#	Time	Area	Height	Width	Symmetry	Area%
1	29.805	885.9	4.7	3.1434	0.507	17.319
2	49.9	4229	10.8	6.5007	0.426	82.681

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %
1	44.373	1160.7	5.3	3.6429	0	24.186
2	50.225	3638.3	13.6	4.4675	0.635	75.814

#	Time	Area	Height	Width	Symmetry	Area%
1	44.373	1160.7	5.3	3.6429	0	24.186
2	50.225	3638.3	13.6	4.4675	0.635	75.814

#	Time	Area	Height	Width	Symmetry	Area%
1	57.206	2722	23.7	1.9142	0	73.304
2	59.61	991.3	9.4	1.7493	0.27	26.696

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %
1	20.66	2316	56.4	0.6314	0.718	77.511
2	23.473	671.9	14.6	0.685	0.849	22.489

#	Time	Area	Height	Width	Symmetry	Area%
1	20.66	2316	56.4	0.6314	0.718	77.511
2	23.473	671.9	14.6	0.685	0.849	22.489

_	#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %
Г	1	25.185	1321.8	25.9	0.7774	0.817	23.052
Γ	2	31.979	4412.3	65.5	1.0124	0.614	76.948

#	Time	Area	Height	Width	Symmetry	Area%
1	25.185	1321.8	25.9	0.7774	0.817	23.052
2	31.979	4412.3	65.5	1.0124	0.614	76.948

#	Time	Area	Height	Width	Symmetry	Area%
1	43.09	362.2	3.7	1.6303	0.928	18.006
2	78.69	1649.2	9.4	2.9139	0.88	81.994

#	Time	Area	Height	Width	Symmetry	Area%
1	28.364	2304.6	41	0.937	0.729	90.610
2	31.165	238.8	4.1	0.9685	0.751	9.390

#	Time	Area	Height	Width	Symmetry	Area%
1	44.102	315.1	3.3	1.5934	0.979	15.414
2	62.012	1729.2	12.3	2.3519	0.847	84.586

#	的月		唯高	唯见	对称四十	畦田祝 る
1	22.432	4902.4	39.8	1.688	0.369	65.987
2	30.286	2527	21.3	1.4365	0.448	34.013

