Copper-catalyzed tandem reaction in ionic liquid: an efficient reusable catalyst and solvent media for the synthesis of fused poly hetero cyclic compounds

Shivaji Naidu and Sabbasani Rajasekhara Reddy* Department of Chemistry, School of Advanced Sciences

VIT University, Vellore-632014, India E-mail: <u>sekharareddy@vit.ac.in</u> or <u>sekharareddyiitm@gmail.com;</u> Mobile Number: +91-9884968303

Supporting Information

General Experimental Procedures: All the reactions were carried out in sealed tube. Commercially available starting materials and other chemicals are purchased from Sigma-Aldrich chemicals, SD-Fine chemicals (India). 4-pentynoic acid and 5-hexynoic acid purchased from Sigma-Aldrich chemicals and used in reactions without further purification. Ionic liquid ([bmim]OTf) was prepared and purified as per reported method.[±] Thin-layer chromatography (TLC) was performed using Merck silica gel 60 F254 precoated plates (0.25 mm) and visualized by UV fluorescence lamp. Silica gel (particle size 100-200 mesh) purchased from Merck, was used for chromatography. ¹H NMR spectra were recorded on a Bruker 400 MHz instrument. Spectra were reported relative to Me₄Si (δ 0.0 ppm) or CHCl₃ residual peak (δ 7.26 ppm). ¹³C 100 MHz NMR were reported relative to CDCl₃ (δ 77.16 ppm). All the products were characterized by their NMR, GC/MS LCMS ESI and HRMS spectra. The first-order peak patterns are indicated as s (singlet), d (doublet), dd (doublet of doublet), t (triplet), q (quadruplet). Complex non-first-order signals are indicated as m (multiplet). FTIR spectra were recorded on a Nicolet 6700 spectrometer and are reported in frequency of absorption (cm-1). GCMS recorded on instrument Perkin Elmer mass spectrometer.

Experimental

General procedure for 3a-methyl-2,3,3a,5-tetrahydro-1H-benzo[d]pyrrolo[2,1b][1,3]oxazin-1-one

A sealed tube was charged with 1.25 mmol (123 mg) of 4-pentynoic acid, 0.5 mL of [bmim]OTf and Cu(OAc)₂.H₂O (5mol%,5 mg). After stirring the above solution for 15min at room temperature, *o*-amino benzyl alcohol 0.5mmol (62 mg) was added to the reaction vial and sealed. The reaction mixture was stirred in an oil bath maintained at 100 °C until the

completion of reaction. After the completion of reaction, 5mL of water and ethyl acetate were added to the reaction mixture and combined layers were filtered through celite bed and washed with minimum amount of ethyl acetate. The organic layers were separated and concentrated under reduced pressure and the deposit was purified by column chromatography with hexane and ethyl acetate as eluent in a ratio of 4:1 to afford compound **4a** with 92% (94.2 mg) yield. Colourless solid, m.p. 68-72 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.30 (d, J=8.24 Hz, 1H), 7.30 (t, J=7.6Hz,1 H), 7.13(t J=7.44, 1H), 7.05(d, J=7.56, 1H), 5.03 (d, J=15.6Hz, 1H), 4.88 (d, J=15.6Hz, 1H), 2.69-2.54 (m,2H),2.29-2.08 (m,2H), 1.51(s, 3H) ¹³C NMR (100 MHz, CDCl₃): δ 171.5, 133.0, 127.7,1124.2, 124.2, 123.2, 120.7,90.1,62.9, 33.1,30.3,21.4. LC MS (m/z): [M + H⁺] calcd for C₁₂H₁₃NO₂: 203.8; found: 204.9

3a-methyl-2,3,3a,5-tetrahydro-1H-benzo[d]pyrrolo[2,1-b][1,3]oxazin-1-one^{5f}**4a.**Colourless solid,m.p. 68-72°C;¹H NMR (400 MHz, CDCl₃): δ 8.30 (d, J=8.24Hz, 1H), 7.30 (t, J=7.6Hz,1H), 7.13(t, J=7.44 Hz, 1H), 7.05(d, J=7.56 Hz, 1H), 5.03 (d, J=15.6Hz, 1H), 4.88 (d, J=15.6Hz, 1H), 2.69-2.54 (m,2H),2.29-2.08 (m,2H), 1.51(s, 3H);¹³C NMR (100 MHz, CDCl₃): δ 171.5, 133.0, 127.7,1124.2, 124.2, 123.2, 120.7,90.1,62.9, 33.1,30.3,21.4. LC MS (m/z): [M + H⁺] calcd for C₁₂H₁₃NO₂: 203.8;found: 204.9.

7-fluoro-3a-methyl-2,3,3a,5-tetrahydro-1H-benzo[d]pyrrolo[2,1-b][1,3]oxazin-1-

one^{5f}**4b**.Colourless solid, m.p. 96-100 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.29(m, 1H), 7.02 (m, 1H), 6.79, (m, 1H), 5.01 (d, J=15.9 Hz, 2H), 4.86, (d, J=15.9Hz, 1H),2.69-2.59(m, 2H),2.31-2.16(m,2H),1.50(s, 3H);¹³C NMR (100 MHz, CDCl₃): δ 171.4, 160.5(d, J=250 Hz), 129.1, 126.6(d, J=7Hz), 122.6(d, J=8Hz) 114.8(d, J=22 Hz),111.0 (d, J=23 Hz) 90.8, 62.8, 33.03, 28.1, 21.3.GCMS: Calculated for C₁₂H₁₂FNO₂: 221.0, found: 221.4.

8-fluoro-3a-methyl-2,3,3a,5-tetrahydro-1H-benzo[d]pyrrolo[2,1-b][1,3]oxazin-1one^{6d}**4c**.Colourless solid,m.p. 78-81°C; ¹H NMR (400 MHz, CDCl₃): δ 8.14(m, 1H), 7.02 (m, 1H), 6.84, (m, 1H), 5.0 (d,J=15.3Hz, 1H), 4.86, (d,J=15.3Hz, 1H),2.69-2.54(m, 2H),2.30-2.11(m,2H),1.50 (s, 3H);¹³C NMR (100 MHz, CDCl₃): δ171.4, 163.1(d, J=243 Hz), 134.1(d, J=12Hz), 125.5(d, J=9Hz), 118.5, 111.5(d, J=22Hz), 107.8(d, J=27Hz), 90.0, 62.6, 33.1, 30.3, 21.3. ESI-MS [M + H⁺]: Calculated for C₁₂H₁₂FNO₂: 221.0, found: 221.1.

6-chloro-3a-methyl-2,3,3a,5-tetrahydro-1H-benzo[d]pyrrolo[2,1-b][1,3]oxazin-1one^{6d}**4d**.Colourless solid,m.p. 105-110°C; ¹H NMR (400 MHz, CDCl₃): δ 8.28 (d, J=8.2 Hz, 1H), 7.30(t, J=8.0Hz, 1H), 7.17 (d,J=7.9Hz, 1H), 4.96 (d,J=16.5Hz, 1H), 4.88 (d, J=16.8Hz, 1H), 2.70-2.56 (m, 2H) ,2.30-2.14(m, 2H), 1.51 (s, 3H);¹³C NMR (100 MHz, CDCl₃): δ 171.6, 134.5, 130.6, 128.2, 124.8, 121.4, 119.0, 89.9, 62.0, 32.9, 30.4, 21.3. LCMS Calculated for $C_{12}H_{12}CINO_2$: 237.6, found, 237.9.

7-chloro-3a-methyl-2,3,3a,4-tetrahydro-1H-benzo[b]pyrrolo[1,2-d][1,4]oxazin-1one^{5f}**4e**.Colourless solid,m.p. 80-85°C; ¹H NMR (400 MHz, CDCl₃): δ 8.28 (d, J=8.8 Hz, 1H), 7.24 (m, 1H), 7.05 (m, 1H), 5.0 (d, J=15.8Hz, 1H), 4.80(d, J=15.8 Hz, 1H), 2.58-2.64 (m,2H), 2.29-2.13 (m, 2H), 1.49 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 171.4, 131.6, 129.5, 127.9, 124.9, 124.2, 122.0, 90.2, 62.6, 30.1, 30.3, 21.3.LCMS Calculated for C₁₂H₁₂ClNO₂: 237.6, found: 237.8.

8-chloro-3a-methyl-2,3,3a,5-tetrahydro-1H-benzo[d]pyrrolo[2,1-b][1,3]oxazin-1one^{5f}**4f**.Colourless solid, m.p. 127-130 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.38 (s, 1H), 7.10 (d, J=8.2 Hz, 1H), 6.99 (d,J=8.2 Hz, 1H), 4.99 (d, J=15.7 Hz, 1H), 4.85(d,J=15.7 Hz, 1H), 2.64-2.59(m, 2H), 2.29-2.12(m, 2H), 1.49(s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 171.4,133.9, 133.3, 125.4, 124.4, 121.3, 120.5, 90.0, 62.6, 30.1, 30.3, 21.3.LCMS Calculated for $C_{12}H_{12}CINO_2$: 237.6, found: 237.9.

7-bromo-3a-methyl-2,3,3a,5-tetrahydro-1H-benzo[d]pyrrolo[2,1-b][1,3]oxazin-1one^{5f}**4g.**Colourless solid, m.p. 116-120 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.23 (d, J=8.8Hz,1H), 7.41 (m, 1H), 7.21 (m, 1H), 5.0 (d, J=15.8 Hz,1H), 4.8 (d,J=15.8 Hz, 1H), 2.64-2.58 (m, 2H), 2.30-2.15(m, 2H), 1.50 (s, 3H);¹³C NMR (100 MHz, CDCl₃): δ 171.4, 132.1, 130.8, 127.2, 125.2, 122.3, 117.2, 90.1, 62.4, 30.1, 30.3, 21.3. LCMS Calculated for C₁₂H₁₂BrNO₂: 281.0, found: 281.8.

7-iodo-3a-methyl-2,3,3a,5-tetrahydro-1H-benzo[d]pyrrolo[2,1-b][1,3]oxazin-1one^{5f}**4h.**Colorless liquid,¹H NMR (400 MHz, CDCl₃): δ 8.30 (m, 1H), 7.39 (m, 1H), 7.13 (m, 1H), 5.04(dd, 1H), 4.88(dd, J=15.6 Hz, 1H), 2.64-2.57 (m, 2H),2.29-2.12(m, 2H), 1.51-1.49(d, J=8.1Hz, 3H);¹³C NMR (100 MHz, CDCl₃): δ 171.4(d, J=7.5Hz), 136.5,132.9(d, J=9.6Hz), 127.6, 124.1 (d, J=3.9Hz),122.3, 120.5, 90.0 (d, J=5.9Hz), 62.9, 33.0, 30.2, 21.2. ESI-MS (m/z): [M + H⁺]; Calculated for C₁₂H₁₂INO₂: 328.9, found: 329.9.

3a,7-dimethyl-2,3,3a,5-tetrahydro-1H-benzo[d]pyrrolo[2,1-b][1,3]oxazin-1-one^{5f}**4i**. Colourless solid, m.p.89-94 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.18 (d, J=8.36,1H), 7.10 (d,J=7.76 Hz, 1H), 6.85(s, 1H), 4.99-4.79(dd, 2H), 2.67-2.52 (m, 2H), 2.30(s, 3H),2.28-2.11(m, 2H),1.49(s, 3H);^{13}C NMR (100 MHz, CDCl₃): δ 171.2, 133.8, 130.5, 128.3, 124.5, 123.0, 120.5, 90.1, 62.9, 33.1, 30.3, 21.3, 21.0. LCMS Calculated for C₁₃H₁₅NO₂: 217.1, found: 217.9.

3a,6-dimethyl-2,3,3a,5-tetrahydro-1H-benzo[d]pyrrolo[2,1-b][1,3]oxazin-1-one **4j**.Semisolid,¹H NMR (400 MHz, CDCl₃): δ 8.14 (d, J=8.28Hz,1H), 7.22 (t,J=7.48 HZ, 1H), 6.95(d,J=7.48Hz, 1H), 4.84(d,J=7Hz, 2H), 2.67-2.54 (m, 2H), 2.28-2.18(m, 2H),2.16(s, 3H),1.49(s, 3H);¹³C NMR (100 MHz, CDCl₃): δ 171.6, 133.5, 132.9, 127.4, 125.9, 121.8, 118.5, 89.7, 62.1, 33.0, 30.3, 21.3, 18.1. ESI-MS (m/z): [M + H⁺]; Calculated for C₁₃H₁₅NO₂ : 217.1, found: 217.8. HRMS: [M + H⁺]; Calculated for C₁₃H₁₆NO₂ :218.1176, found: 218.1176.

7,8-dimethoxy-3a-methyl-2,3,3a,5-tetrahydro-1H-benzo[d]pyrrolo[2,1-b][1,3]oxazin-1one4k.semisolid;¹H NMR (400 MHz, CDCl₃): δ 7.96 (s, 1H), 6.51 (s, 1H), 4.96(d,J=15.2Hz, 1H), 4.80(d,J=15.2Hz, 1H), 3.90 (s, 3H),3.83 (s,3H) 2.63-2.55(m ,2H),2.27-2.13(m, 2H),1.49(s, 3H);¹³C NMR (100 MHz, CDCl₃): δ 171.1, 148.3, 146.1, 126.5, 114.9, 106.8, 104.4, 90.1, 62.8, 56.2, 56.2, 33.1, 30.4.ESI-MS (m/z): [M + H⁺]; Calculated for C₁₄H₁₇NO₄: 263.1, Found: 264.2. HRMS: [M + H⁺]; Calculated for C₁₄H₁₁₈NO₄: 264.12303, Found: 264.12403.

4a-methyl-2,3,4,4a-tetrahydrobenzo[d]pyrido[2,1-b][1,3]oxazin-1(6H)-one^{5f}**4l**.Colourless oil; ¹H NMR (400 MHz, CDCl₃): δ 7.78 (d, J=8.2 Hz, 1H), 7.25 (m, 1H), 7.14(d, J=7.56Hz, 1H), 7.01(d, J=7.0Hz, 1H), 4.91(s, 2H), 2.69-2.49 (m,2H),2.15-1.91 (m,3H), 1.83-1.72(m, 1H), 1.47(s, 3H);¹³C NMR (100 MHz, CDCl₃): δ 169.7, 134.7, 127.4, 126.6, 126.4, 125.0, 123.9, 86.7, 62.8, 37.1, 34.3, 23.8, 16.9. ESI-MS(m/z): [M + H⁺]; Calculated for C₁₃H₁₅NO₂: 217.3,found: 218.1.

8-fluoro-4a-methyl-2,3,4,4a-tetrahydrobenzo[d]pyrido[2,1-b][1,3]oxazin-1(6H)-

one^{5f}**4m.**Colourless solid,m.p.76-79 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.7 (m, 1H), 6.96 (m, 1H), 6.72(m, 1H), 4.87(s, 2H), 2.71-2.48 (m,2H),2.15-1.91 (m,3H), 1.81-1.73(m, 1H),1.45(s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 169.8, 158.5(d, J=243Hz), 130.6 (d, J=3Hz), 129.3 (d, J=7Hz), 128.4(d, J=8Hz), 113.9(d, J=22Hz), 110.3(d, J=23Hz), 86.7, 62.6, 37.0, 34.2, 23.7, 16.8.GCMS: Calculated for C₁₃H₁₄FNO₂: 235.1,found: 235.1.

F C C

9-fluoro-4a-methyl-2,3,4,4a-tetrahydrobenzo[d]pyrido[2,1-b][1,3]oxazin-1(6H)one^{6d}**4n**.Colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 7.65-7.62 (m, 1H), 6.97-6.93 (m, 1H), 6.87-6.82(m, 1H), 4.87(s, 2H), 2.68-2.50 (m,2H),2.15-1.90 (m,3H), 1.86-1.73(m, 1H), 1.42(s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 169.7, 159.8(d, J=240Hz), 135.7 (d, J=10Hz), 124.8 (d, J=10Hz), 122.8(d, J=10Hz), 113.2(d, J=30Hz), 112.3(d, J=30Hz), 86.8, 62.3, 37.0, 34.3, 23.5, 16.8. ESI-MS (m/z): [M + H⁺]; Calculated for C₁₃H₁₄FNO₂: 235.1,found: 236.2.

7-chloro-4a-methyl-2,3,4,4a-tetrahydrobenzo[d]pyrido[2,1-b][1,3]oxazin-1(6H)-one^{6d}**4o**. Colourless solid,m.p.116-121 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.22(d, J=8.08Hz,1H), 7.21 (m, 2H), 4.88(dd, J=16.52Hz,2H), 2.68-2.49 (m, 2H), 2.15-1.91 (m, 3H),1.82-1.72(m, 1H), 1.47 (s, 3H);¹³C NMR (100 MHz, CDCl₃): δ 169.9, 136.2, 130.1, 127.2, 125.5, 125.1, 124.9, 86.5, 61.7, 37.1, 34.4, 23.3, 16.7. ESI-MS (m/z): [M + H⁺]:[M + 2]: Calculated for C₁₃H₁₄ClNO₂: 251.0, found: 252.2, 254.2. HRMS (m/z): [M + H⁺]: Calculated for C₁₃H₁₅ClNO₂: 252.07953, found: 252.07858.

8-chloro-4a-methyl-2,3,4,4a-tetrahydrobenzo[d]pyrido[2,1-b][1,3]oxazin-1(6H)one^{5f}**4p**.Colourless oil; ¹H NMR (400 MHz, CDCl₃): δ 7.76(d,J=8.8Hz,1H), 7.20 (m, 1H), 7.0(m,1H), 4.86(s, 2H), 2.71-2.49 (m, 2H), 2.16-1.90 (m, 3H),1.81-1.73 (m, 1H), 1.46 (s, 3H);¹³C NMR (100 MHz, CDCl₃): δ 169.8, 133.2, 130.3, 129.0, 127.8, 126.8, 123.8, 86.8, 62.3, 37.0, 34.2, 23.5, 16.9. ESI-MS (m/z): [M + H⁺], [M + 2]: Calculated for C₁₃H₁₄ClNO₂: 251.7,found : 252.2, 254.2.

9-chloro-4a-methyl-2,3,4,4a-tetrahydrobenzo[d]pyrido[2,1-b][1,3]oxazin-1(6H)-

one^{5f}**4q**.Colourless oil; ¹H NMR (400 MHz, CDCl₃): δ 7.87(d, J=2.04Hz,1H), 7.11 (dd,J=6.2Hz 1H), 6.94(d,J=8.32Hz,1H), 4.87(s, 2H), 2.68-2.46 (m, 2H), 2.11-1.91 (m, 3H),1.80-1.70 (m, 1H), 1.46 (s, 3H);¹³C NMR (100 MHz, CDCl₃): δ 169.7, 135.6, 132.1, 126.3, 125.6, 125.3, 124.9, 86.8, 62.4, 36.9, 34.3, 23.6, 16.7.ESI-MS (m/z): [M + H⁺], [M + 2]: Calculated for C₁₃H₁₄ClNO₂: 251.7, found: 252.2, 254.1.

8-bromo-4a-methyl-2,3,4,4a-tetrahydrobenzo[d]pyrido[2,1-b][1,3]oxazin-1(6H)one^{5f}**4r**.Colourless oil; ¹H NMR (400 MHz, CDCl₃): δ 7.71(d, J=8.8Hz,1H), 7.35 (d,J=8.8Hz, 1H), 7.15(s,1H), 4.86(s, 2H), 2.66-2.48 (m, 2H), 2.15-1.94 (m, 3H),1.81-1.73(m, 1H), 1.46 (s, 3H);¹³C NMR (100 MHz, CDCl₃): δ 169.7, 133.8, 129.7, 129.3, 128.1, 126.8,118.1,86.8, 62.2, 36.9, 34.3, 23.6, 16.9. ESI-MS (m/z): [M + H⁺], [M + 2]: Calculated for C₁₃H₁₄BrNO₂: 295.0,found: 296.1, 298.0.

8-iodo-4a-methyl-2,3,4,4a-tetrahydrobenzo[d]pyrido[2,1-b][1,3]oxazin-1(6H)one^{5f}**4s**.Colourless oil; ¹H NMR (400 MHz, CDCl₃): δ 7.59(m, 2H), 7.35 (s, 1H), 4.85(s, 2H), 2.66-2.48 (m, 2H), 2.12-1.92 (m, 3H),1.81-1.72 (m, 1H), 1.47 (s, 3H);¹³C NMR (100 MHz, CDCl₃): δ 169.6, 135.6, 134.6, 132.8, 129.6, 129.3,118.1,89.1, 86.8,61.9 37.0, 34.3, 23.6, 16.8. ESI-MS (m/z): [M + H⁺]: Calculated for C₁₃H₁₄INO₂: 343.0,found: 344.1

4a,8-dimethyl-2,3,4,4a-tetrahydrobenzo[d]pyrido[2,1-b][1,3]oxazin-1(6H)-one^{5f}**4t**.Colourless oil; ¹H NMR (400 MHz, CDCl₃): δ 7.67(d, J=8.4Hz,1H), 7.05 (d,J=8.3Hz, 1H), 6.80(s,1H), 4.86(s, 2H), 2.66-2.48 (m, 2H), 2.30 (s, 3H),2.14-1.90(m, 3H),1.81-1.71(m, 1H), 1.46 (s, 3H);¹³C NMR (100 MHz, CDCl₃): δ 169.7, 134.7, 132.1, 127.4, 127.0, 126.1, 124.2, 86.7, 62.8, 37.1, 34.3, 23.7,21.1,16.9. ESI-MS (m/z): [M + H⁺]: Calculated for C₁₄H₁₇NO₂: 231.1,found 232.3.

4a,7-dimethyl-2,3,4,4a-tetrahydrobenzo[d]pyrido[2,1-b][1,3]oxazin-1(6H)-one **4u**.Colourless oil; ¹H NMR (400 MHz, CDCl₃): δ 7.59(d, J=8.24Hz,1H), 7.17 (t,J=7.8Hz, 1H), 6.95(d, J=7.44 Hz,1H), 4.81(d,J=3.24 Hz,2H), 2.67-2.48 (m, 2H), 2.14 (s, 3H),2.12-1.91(m, 3H),1.82-1.72(m, 1H), 1.46 (s, 3H);¹³C NMR (100 MHz, CDCl₃): δ 169.9, 134.5, 133.0, 126.9, 126.2, 125.6, 124.2, 86.1, 61.8, 37.2, 34.4, 23.5,17.8,16.8. ESI-MS (m/z): [M + H⁺]:Calculated for C₁₄H₁₇NO₂: 231.1,found: 232.3.HRMS: [M + H⁺]:Calculated for C₁₄H₁₇NO₂: 232.13394,found: 232.13321.

¹HNMR spectrum of 3a-methyl-2,3,3a,5-tetrahydro-1H-benzo[d]pyrrolo[2,1-b][1,3]oxazin-1-one **4a**

¹³C NMR spectrum of 3a-methyl-2,3,3a,5-tetrahydro-1H-benzo[d]pyrrolo[2,1-b][1,3]oxazin-1-one **4a**

LCMS of 3a-methyl-2,3,3a,5-tetrahydro-1H-benzo[d]pyrrolo[2,1-b][1,3]oxazin-1-one 4a

¹³C NMR spectrum of 7-fluoro-3a-methyl-2,3,3a,5-tetrahydro-1H-benzo[d]pyrrolo[2,1b][1,3]oxazin-1-one **4b**

Qualitative Report

#	RT	Scan	Height	Area	Area %	Norm %
1	13.338	2167	13,470,882	879,466.8	0.620	0.63
2	16.529	2805	3,325,406,208	139,439,728.0	98.235	100.00
3	18.770	3253	8,297,768	381,329.2	0.269	0.27
4	18.890	3277	8,438,605	661,103.1	0.466	0.47
5	22.812	4061	3,638,243	348,149.4	0.245	0.25
6	24.232	4345	5,605,049	235,905.5	0.166	0.17

GCMS of 7-fluoro-3a-methyl-2,3,3a,5-tetrahydro-1H-benzo[d]pyrrolo[2,1-b][1,3]oxazin-1-one **4b**

¹³C NMR NMR spectrum of8-fluoro-3a-methyl-2,3,3a,5-tetrahydro-1H-benzo[d]pyrrolo[2,1-b][1,3]oxazin-1-one**4c**

ESI-MS of8-fluoro-3a-methyl-2,3,3a,5-tetrahydro-1H-benzo[d]pyrrolo[2,1-b][1,3]oxazin-1-one4c

SRSN-91B

¹HNMR spectrum of 6-chloro-3a-methyl-2,3,3a,5-tetrahydro-1H-benzo[d]pyrrolo[2,1-b][1,3]oxazin-1-one **4d**

SRSN-91B

¹³C NMR spectrum of 6-chloro-3a-methyl-2,3,3a,5-tetrahydro-1H-benzo[d]pyrrolo[2,1b][1,3]oxazin-1-one 4d

LCMS of 6-chloro-3a-methyl-2,3,3a,5-tetrahydro-1H-benzo[d]pyrrolo[2,1-b][1,3]oxazin-1-one **4d**

¹³C NMR spectrum of 7-chloro-3a-methyl-2,3,3a,5-tetrahydro-1H-benzo[d]pyrrolo[2,1-b][1,3]oxazin-1-one**4e**

70

60 50

30 20 10

0

ppm

40

80

210 200 190 180 170 160 150 140 130 120 110 100 90

LCMSof 7-chloro-3a-methyl-2,3,3a,5-tetrahydro-1H-benzo[d]pyrrolo[2,1-b][1,3]oxazin-1-one4e

¹HNMR spectrum of 8-chloro-3a-methyl-2,3,3a,5-tetrahydro-1H-benzo[d]pyrrolo[2,1-b][1,3]oxazin-1-one **4f**

¹³C NMR spectrum of 8-chloro-3a-methyl-2,3,3a,5-tetrahydro-1H-benzo[d]pyrrolo[2,1-b][1,3]oxazin-1-one **4f**

sal

Sample Information Sample Information SEV-MA1413-53 US : 4/21/2014 5:31:17 PM : 210414M 40.lcd : Test Method - LCMS.lcm : D:\Shimadzu MS Data\Tuning Files\ESI 060314---4.lct Sample Name Date Acquired Data File Method File Tuning File Vial :31 Viai :31 Column : X-Select CSH C18 (50x3.0mm,3.5um) M.P : A-0.05% Aq TFA , B:ACN T%B :0.01/10,0.5/10,4/90,8/90 Flow : 0.8ml/min(Gradient) Chromatogram SEV-MA1413-53 US D:\Shimadzu MS Data\2014 Data\APRIL-2014\LCMS\210414M 40.led uV 3.341 1500000-1000000-500000-2.643 2.878 3.075 3:358 3:368 4.041 1PDA Multi 1 0 4 2 3 7 ò min 1 PDA Multi 1 / 200nm - 400nm 4nm MS Spectrum Ret Time:2.850-2.933 Polarity:Pos: Base Peak:203.95 204.0 100-290.1 129.8 246.0 334.3 362.0 444.0 304.9 184.0 263.9 222.5 386.4 408.4 473.9 149.0 150 200 250 300 350 400 450 m/z Ret Time:3.317-3.433 Polarity:Pos: Base Peak:237.90 237.9 100-278.9 -280,9 372.2 342.1 191.9 219.3 241.0 110.9 129.8 301.9 320.1 416.1 459.8 487.9 164.1 1 150 200 250 300 350 400 450 m/z

LCMSof8-chloro-3a-methyl-2,3,3a,5-tetrahydro-1H-benzo[d]pyrrolo[2,1-b][1,3]oxazin-1-one4f

¹HNMR spectrum 7-bromo-3a-methyl-2,3,3a,5-tetrahydro-1H-benzo[d]pyrrolo[2,1b][1,3]oxazin-1-one**4g**

b][1,3]oxazin-1-one4g

 Sample Name
 :SEV-MA1413-52LS

 Date Acquired
 : 4/18/2014 8:28:23 PM

 Data File
 : 180414M 54.lcd

 Method File
 : Test Method - LCMS.lcm

 Tuning File
 : D:\Shimadzu MS Data\Tuning Files\ESI 060314---4.lct

 Vial
 :28

 Column : X-Select CSH C18 (50x3.0mm,3.5um)

 M.P : A-0.05% Aq TFA , B:ACN

 T%B :0.01/10,0.5/10,4/90,8/90

 Flow : 0.8ml/min(Gradient)

LCMS of7-bromo-3a-methyl-2,3,3a,5-tetrahydro-1H-benzo[d]pyrrolo[2,1-b][1,3]oxazin-1-one4g

¹HNMR spectrum of 7-iodo-3a-methyl-2,3,3a,5-tetrahydro-1H-benzo[d]pyrrolo[2,1-b][1,3]oxazin-1-one**4h**

¹³C NMR spectrum of 7-iodo-3a-methyl-2,3,3a,5-tetrahydro-1H-benzo[d]pyrrolo[2,1b][1,3]oxazin-1-one4h

ESI-MSof 7-iodo-3a-methyl-2,3,3a,5-tetrahydro-1H-benzo[d]pyrrolo[2,1-b][1,3]oxazin-1-one4h

¹HNMR spectrum of 3a,7-dimethyl-2,3,3a,5-tetrahydro-1H-benzo[d]pyrrolo[2,1b][1,3]oxazin-1-one **4i**

¹³C NMR spectrum of 3a,7-dimethyl-2,3,3a,5-tetrahydro-1H-benzo[d]pyrrolo[2,1b][1,3]oxazin-1-one **4i**

 Sample Name
 SEV-MA1413-56US
 Data file : APR-24000017.D
 Acq. Date : 4/24/2014 12:28:48 PM

 Method
 LCMS-II.M
 Analyst : ksn
 A

 Instrument
 Agilent 6310 Ion Trap
 A

Signature SIF VIT VELLORE SRSN-299

¹³C NMR spectrum of 3a,6-dimethyl-2,3,3a,5-tetrahydro-1H-benzo[d]pyrrolo[2,1-b][1,3]oxazin-1-one**4**j

ESI-MSof 73a,6-dimethyl-2,3,3a,5-tetrahydro-1H-benzo[d]pyrrolo[2,1-b][1,3]oxazin-1-one4j

HRMS of 73a,6-dimethyl-2,3,3a,5-tetrahydro-1H-benzo[d]pyrrolo[2,1-b][1,3]oxazin-1-one **4**j

Signature SIF VIT VELLORE SRSN-310-D

¹³C NMR spectrum of 7,8-dimethoxy-3a-methyl-2,3,3a,5-tetrahydro-1H-benzo[d]pyrrolo[2,1-b][1,3]oxazin-1-one**4k**

ESI-MS of 7,8-dimethoxy-3a-methyl-2,3,3a,5-tetrahydro-1H-benzo[d]pyrrolo[2,1-b][1,3]oxazin-1-one **4**k

HRMS of 7,8-dimethoxy-3a-methyl-2,3,3a,5-tetrahydro-1H-benzo[d]pyrrolo[2,1-b][1,3]oxazin-1-one **4**k

¹HNMR spectrum of 4a-methyl-2,3,4,4a-tetrahydrobenzo[d]pyrido[2,1-b][1,3]oxazin-1(6H)-one4l

Signature SIF VIT VELLORE SRSN-204

¹³C NMR spectrum of 4a-methyl-2,3,4,4a-tetrahydrobenzo[d]pyrido[2,1-b][1,3]oxazin-1(6H)-one4l

ESI-MSof 4a-methyl-2,3,4,4a-tetrahydrobenzo[d]pyrido[2,1-b][1,3]oxazin-1(6H)-one4l

¹HNMR spectrum of 8-fluoro-4a-methyl-2,3,4,4a-tetrahydrobenzo[d]pyrido[2,1-b][1,3]oxazin-1(6H)-one4**m**

b][1,3]oxazin-1(6H)-one4m

Qualitative Report

 File:
 C:\TurboMass\2016.PRO\Data\SRSN-326-(16IS-0129).raw

 Acquired:
 27-Jan-16 06:35:46 PM
 Printed: 28-Jan-16 04:07 PM

 Description:
 GC/MS Method:
 GC: METHOD-1.mth MS: METHOD-1.EXP
 Page 1 of 1

 Sample ID:
 SRSN-326-(16IS-0129)
 Vial Number: 7

 SRSN-326-(16IS-0129)
 Scan El+
 TIC

 100
 1
 7.32e9

#	RT	Scan	Height	Area	Area %	Norm %
1	17.599	3019	7,292,473,856	462,605,632.0	96.367	100.00
2	17.825	3064	222,234,896	17,438,058.0	3.633	3.77

GCMS of 8-fluoro-4a-methyl-2,3,4,4a-tetrahydrobenzo[d]pyrido[2,1-b][1,3]oxazin-1(6H)-one4m

¹HNMR spectrum of 9-fluoro-4a-methyl-2,3,4,4a-tetrahydrobenzo[d]pyrido[2,1-b][1,3]oxazin-1(6H)-one**4n**

Signature SIF VIT VELLORE SRSN-313

¹³C NMR spectrum of 9-fluoro-4a-methyl-2,3,4,4a-tetrahydrobenzo[d]pyrido[2,1-b][1,3]oxazin-1(6H)-one4n

ESI-MS of 9-fluoro-4a-methyl-2,3,4,4a-tetrahydrobenzo[d]pyrido[2,1-b][1,3]oxazin-1(6H)-one4n

¹³CNMR spectrum of 7-chloro-4a-methyl-2,3,4,4a-tetrahydrobenzo[d]pyrido[2,1-b][1,3]oxazin-1(6H)-one**4o**

ESI-MSof 7-chloro-4a-methyl-2,3,4,4a-tetrahydrobenzo[d]pyrido[2,1-b][1,3]oxazin-1(6H)-one **4o**

HRMS of 7-chloro-4a-methyl-2,3,4,4a-tetrahydrobenzo[d]pyrido[2,1-b][1,3]oxazin-1(6H)-one **4o**

b][1,3]oxazin-1(6H)-one4p

b][1,3]oxazin-1(6H)-one4p

ESI-MS of 8-chloro-4a-methyl-2,3,4,4a-tetrahydrobenzo[d]pyrido[2,1-b][1,3]oxazin-1(6H)-one4p

¹³C spectrum of 9-chloro-4a-methyl-2,3,4,4a-tetrahydrobenzo[d]pyrido[2,1-b][1,3]oxazin-1(6H)-one4q

ESI-MS of9-chloro-4a-methyl-2,3,4,4a-tetrahydrobenzo[d]pyrido[2,1-b][1,3]oxazin-1(6H)-one **4q**

¹³C NMR spectrum of 8-bromo-4a-methyl-2,3,4,4a-tetrahydrobenzo[d]pyrido[2,1-b][1,3]oxazin-1(6H)-one **4r**

ESI-MS of 8-bromo-4a-methyl-2,3,4,4a-tetrahydrobenzo[d]pyrido[2,1-b][1,3]oxazin-1(6H)-one **4r**

¹ H NMR spectrum 8-iodo-4a-methyl-2,3,4,4a-tetrahydrobenzo[d]pyrido[2,1-b][1,3]oxazin-1(6H)-one 4s

¹³C NMR spectrum 8-iodo-4a-methyl-2,3,4,4a-tetrahydrobenzo[d]pyrido[2,1-b][1,3]oxazin-1(6H)-one 4s

ESI-MS of 8-iodo-4a-methyl-2,3,4,4a-tetrahydrobenzo[d]pyrido[2,1-b][1,3]oxazin-1(6H)-one 4s

¹HNMR spectrum of 4a,8-dimethyl-2,3,4,4a-tetrahydrobenzo[d]pyrido[2,1-b][1,3]oxazin-1(6H)-one **4t**

Signature SIF VIT VELLORE SRSN-211

¹³C NMR spectrum of 4a,8-dimethyl-2,3,4,4a-tetrahydrobenzo[d]pyrido[2,1-b][1,3]oxazin-1(6H)-one **4t**

ESI-MS of 4a,8-dimethyl-2,3,4,4a-tetrahydrobenzo[d]pyrido[2,1-b][1,3]oxazin-1(6H)-one4t

Signature SIF VIT VELLORE SRSN-303

¹³C NMR spectrum 4a,7-dimethyl-2,3,4,4a-tetrahydrobenzo[d]pyrido[2,1-b][1,3]oxazin-1(6H)-one **4u**

ESI-MS of 4a,7-dimethyl-2,3,4,4a-tetrahydrobenzo[d]pyrido[2,1-b][1,3]oxazin-1(6H)-one4u

HRMS of 4a,7-dimethyl-2,3,4,4a-tetrahydrobenzo[d]pyrido[2,1-b][1,3]oxazin-1(6H)-one **4u**

¹³C NMR spectrum 5-methylenedihydrofuran-2(3H)-one II

¹HNMR spectrum of [bmim]OTf

¹³C NMR spectrum of [bmim]OTf

¹⁹F-NMR spectrum of [bmim]OTf

1-Butyl-3-methylimidazolium trifluoromethanesulfonate[±]

Colourless liquid; ¹H NMR (400 MHz, CDCl₃): δ 9.11 (s, 1H), 7.35 (s, 1H), 7.31 (s, 1H), 4.21 (t, J= 7 Hz, 2H), 3.96(s, 3H), 1.87-1.83 (m,2H), 1.38-1.33 (m, 2H), 0.96 (s, J= 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 137.0, 123.7, 122.2, 119.2, 50.0, 36.5, 32.0, 19.5, 13.4. ¹⁹F-NMR (376.5 MHz, CDCl₃)): δ -78.6.

References

[±]P. Bonhote, A. P. Dias, N. Papageorgiou, K. Kalyanasundaram and M. Grätzel, *Inorg. Chem.*, 1996, **35**, 1168-1178.