Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Facile preparation of luminescent amphiphilic carbohydrate polymers with aggregation induced emission characteristics through formation of Schiff base for biological imaging

Yun Xue^{a,b,#}, Meiying Liu^{b,#}, Hongye Huang^b, Fengjie Deng^b, Guangjian Zeng^b, Qing Wan^b, Shangdong Liang^{a,*}, Xiaoyong Zhang^{a,b,*}, Yen Wei^{c,*}

- a Department of Physiology, Medical School of Nanchang University, Nanchang 330006, PR China
- b College of Chemistry and Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
- c Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084, P. R. China.

Results and Discussion

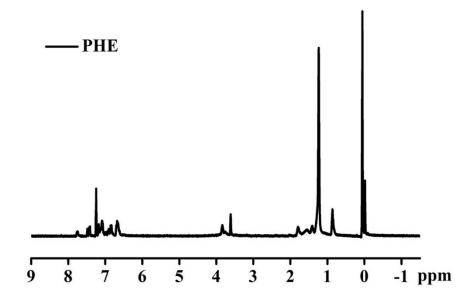


Fig. S1 ¹HNMR spectrum of PhE dispersed in CDCl₃

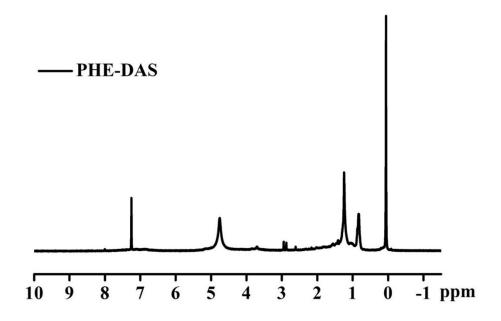


Fig. S2 1 HNMR spectrum of PhE-DAS dispersed in CDCl $_3$

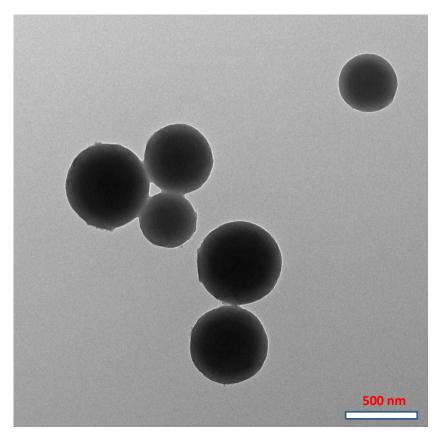
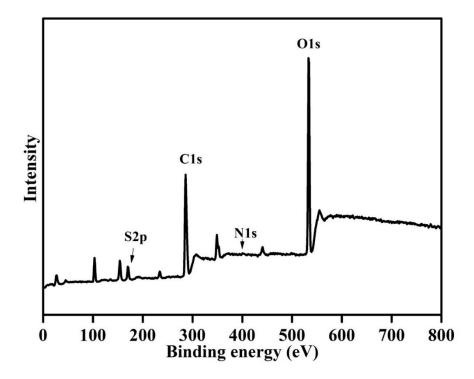



Fig. S3 TEM images of PhE-DAS. The size of PhE-DAS LPMs is ranged from 200 to 500 nm

Fig. S4 XPS spectrum of PHE-DAS. The elements such as carbon, nitrogen, oxygen, and sulfur were observed.

Table S1 element contents (%) of PhE-DAS based on the XPS analysis.

	C1s	N1s	O1s	S2p
PhNH ₂ -DAS	57.28	1.1	38.45	3.16

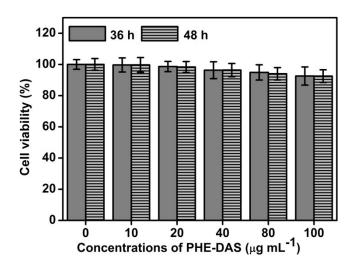


Fig. S5 Cell viability of PHE-DAS for 36 h and 48 h with different concentrations (10-100 μg mL⁻¹) for incubating.