HfO₂ nanodots incorporated in TiO₂ and its

hydrogenation for High Performance Dye Sensitized

Solar Cells

Devika Laishram, Kiran P. Shejale, Rakesh K. Sharma* and Ritu Gupta*

Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India. 342011

Electronic Supporting Information (ESI)

Table of Contents

- Table S1: literature survey of doping in TiO₂,
- Figure S1: FESEM images of HfO₂ doped TiO₂ (1%, 5% and 10%)
- Figure S2: BET surface area measurement of HfO_2/TiO_2 and TiO_2
- Figure S3: XRD patterns
- Figure S4: TEM images of H-TiO₂
- Figure S5: Raman spectra of H-HfO₂/TiO₂ and H-TiO₂
- Figure S6: Schematic of DSSC
- Figure S7: Dye deloading calculation using absorption spectrum
- Figure S8: BET surface area measurement of $H-HfO_2/TiO_2$ and $H-TiO_2$
- Table S2: EIS performance parameters calculation

S. No.	Dopant (doping %)	Band gap (eV)	Solar cell parameters				Ref
			Jsc	Voc	η	FF	_
1.	Zr (5) Zr (10)	3.27 3.34	4.5 3.2	0.7 0.72			[1]
2.	$Fe_2O_3(10)$	2.51	16.88	0.77	7.27	56	[2]
3.	Nb (0.7) Nb (2.7) Nb (3.5)	3.16 3.12 3.06	14.4 17.7 18	0.76 0.74 0.68	8.0 9.0 8.2	73 69 67	[3]
4.	Zr (4)	2.7	NA	NA	NA	NA	[4]
5.	Nb (2)*	NA	20.4	1.036	16.3	77	[5]
6.	Zr (1)	NA	16.5	.715	8.1	69	[6]
7.	Fe (10)	2.8	NA	NA	NA	NA	[7]
8.	Sr (0.06 M)#	3.08	NA	NA	0.69	NA	[8]
9.	S (0.22)	2.98	NA	NA	NA	NA	[9]
10.	Ce (10)	2.69	NA	NA	NA	NA	[10]
11.	Ce (0.03)	1.678	NA	NA	NA	NA	[11]
12.	Ce (3.5) Nd (1) Pr (3) Sm (2) Gd (2) Eu (2) La (3) SiO ₂	2.70 3.10 3.10 3.15 3.10 3.05 3.15 2.88	NA	NA	NA	NA	[12]
14	Ag	2.7	NA	NA	NA	NA	[14]
15	V ₂ O ₅	2.78	NA	NA	NA	NA	[15]
16	CuO	1.44	NA	NA	NA	NA	[16]

Table S1 Different doping in TiO_2

*Perovskite solar cell; # Photoelectrochemical cell

References

- 1. V. Manthina, and A.G. Agrios, *Electrochim. Acta*, 2015, **169**, 416.
- 2. B. Kılıç, N. Gedik, S. P. Mucur, A. S. Hergul and E. Gür, *Mater. Sci. Semicond. Process.*, 2015, **31**, 363.
- 3. N. A.Tsvetkov, L. L. Larina, O. Shevaleevskiy, E. A. A. Ammar, *Prog. Photovolt. Res. Appl.*, 2012. 20, 904.
- 4. S. Swetha and R. G. Balakrishna, *Chinese J. Catal.*, 2011, **32**, 789.
- 5. B. X, Chen, H. S. Rao, W. G. Li. Y. F. Xu, H. Y. Chen, D. B. Kuang and C. -Y. Su, *J. Mater. Chem. A*, 2016, 4, 5647.
- 6. M. Durr, S. Rosselli, A. Yasuda and G. Nelles, J. Phys. Chem. B, 2006. 110, 4.
- S. George, S. Pokhrel, Z. Ji, B. L. Henderson, T. Xia, L. J. Li, J. I. Zink, A. E. Nel and L. Madler, J. Am. Chem. Soc., 2011, 133, 11270.
- 8. H. A. Hamedani, N. K. Allam, H. Garmestani and M. A. E. -Sayed, *J. Phys. Chem. C*, 2011. **115**,13480.
- 9. M. Jalalah, M. Faisal, H. Bouzid, A. A. Ismail, S. A. A. Sayari, *Mater. Res. Bull.*, 2013, 48, 3351.
- 10. A. Malik, S. Hameed, M. J. Siddiqui, M. M. Haque and M. Muneer, *Int. J. Photoenergy*, 2013, 2013, 1.
- 11. G. Xiao, X. Huang, X. Liao and B. Shi, J. Phys. Chem. C, 2013. 117, 9739.
- 12. V. Štengl, S. Bakardjieva and N. Murafa, *Mater. Chem. Phys.*, 2009. 114, 217.
- 13. C. Kaewtip, K. Accanit, N. Chaowai, K. Areerat, P. Reanjaruan and V. Boonumnauyvitaya, *Adv. Mater. Phys. Chem.*, 2012, **02**, 40.
- 14. N. Roshan, P. Thakur. M. Chaskar, J. Mater. Sci. Eng. B., 2012, 2012, 7.
- 15. X. H. Yang, H. T. Fu, X. Z. An, X. C. Jiang and A. B. Yu, *RSC Adv.*, 2016, 6, 34103.
- 16. S. I. In, D.D. Vaughn, 2nd, and R. E. Schaak, *Angew. Chem. Int. Ed. Engl*, 2012. **51**, 3915.

Figure S1 FESEM images of (a) TiO_2 (b) 1% doped HfO_2/TiO_2 (c) 1% doped $H-HfO_2/TiO_2$ (d) 5% doped HfO_2/TiO_2 and (e) 10% doped HfO_2/TiO_2 .

Figure S2 Nitrogen adsorption-desorption isotherms of HfO_2/TiO_2 and TiO_2 . The isotherm can be classified as type IV with a hysteresis loop. The surface area of HfO_2/TiO_2 is (103.656 m²/g) more as compared to TiO_2 (91.08 m²/g).

Figure S3 XRD patterns of (a) hydrogenated HfO_2/TiO_2 and TiO_2 and $(b) HfO_2/TiO_2$ and TiO_2 without hydrogenation.

Figure S4: Low and high magnification TEM images (d-e) high resolution TEM and (f) ED pattern of H-TiO₂. It is similar to H-HfO₂/TiO₂ in comparison.

Figure S5 Raman spectra of H-HfO₂/TiO₂ and H-TiO₂.

The Raman spectra of H-HfO₂/TiO₂ and H-TiO₂ correspond to TiO₂ anatase phase with observed peaks at 144,197, 399, 518 and 641 cm⁻¹. These peaks correspond to E_g modes at (144, 192 and 641 cm⁻¹) and B_{1g} and A_{1g} modes at 399 and 518 cm⁻¹ respectively.¹ The highly intense peak of E_g arising at 146 cm⁻¹ in the lower wavenumber indicates long range ordering in the nanocrystal.^{2,3} The shift in the stretching mode of E_g peak from 146 to 151 cm⁻¹, is attributed to the induced defects and possible disorientation in the lattice structure upon HfO₂ doping in H-TiO₂. The E_g , A_{1g} and B_g peaks are due to the symmetric stretching, symmetric bending and antisymmetric bending vibrations of O-Ti-O.⁴

References

- 1. M. Vasilopoulou, *Nanoscale*, 2014, **6**, 13726-13739.
- 2. X. Wang, J. Shen and Q. Pan, J. Raman Spectroscopy, 2011, 42, 1578-1582.
- 3. M. S. Z. W.F. Zhang, Z. Yin, Q. Chen, *Appl. Phys. B*, 2000, **70**, 5.
- 4. F. Tian, Y. Zhang, J. Zhang and C. Pan, J. Phys. Chem. C, 2012, 116, 7515-7519.

Figure S6 A schematic showing sandwich model of the fabricated DSSC device.

Figure S7 Nitrogen adsorption-desorption isotherms of H-HfO₂/TiO₂ and H-TiO₂. The isotherm can be classified as type-IV with a hysteresis loop. The surface area of H-HfO₂/TiO₂ is $(74.21m^2/g)$ more as compared to H-TiO₂ (56.186 m²/g).

Figure S8 Absorbance spectra of the dye deloaded from H-HfO₂/TiO₂ and H-TiO₂ photoanode.

Calculation for dye loading capacity

Concentration of dye absorbed

- 1. $\text{H-HfO}_2/\text{TiO}_2 = 10.1 \times 10^{-9} \text{ mol cm}^{-2}$
- 2. H-TiO₂ = 6.55×10^{-9} mol cm⁻²

Molar extinction coefficient (ϵ) for N3 dye at 500 nm is 1.45×10^4 cm⁻¹.

From Beer Lambert's law, $A = \epsilon lc$ where l and c are the length of the cuvette (1 cm) and concentration of the dye respectively.

For $H-HfO_2/TiO_2$, A = 0.147 (found from the graph)

Thus, concentration of dye absorbed = 1.01×10^{-5} M or 10.1×10^{-9} mol cm⁻²

For H-TiO_{2,} A = 0.095 (found from the graph)

Thus, concentration of dye absorbed = 6.55×10^{-6} M or 6.55×10^{-9} mol cm⁻²

Photoanode for DSSC	R _s (Ω)	R ₁ (Ω)	C ₁ (µF)	f _{max} (Hz)	$\tau_n = (R_1 * C_1)$ (ms)	П _с (%)
H-HfO ₂ /TiO ₂	19.63	14.35	9.898	19.54	0.142	42.23
H-TiO ₂	17.5	13.3	4.247	29.10	0.056	43.18

Table S2 EIS performance results of the DSSC based on H-HfO₂-TiO₂ and H-TiO₂.^a

^a R_s is series resistance, R_1 is charge transfer resistance, C_1 is chemical capacitance, τ_n is electron lifetime, and η_c is charge collection efficiency.