Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supplementary Information

Impact of reaction variables and PEI/l-cysteine ratio on optical properties and cytocompatibility of cationic Ag₂S quantum dots as NIR bio-imaging

probes

Fatma Demir Duman ^a, Rouhullah Khodadust ^a, Emek Goksu Durmusoglu ^a, Mustafa Baris

Yagci^c, Havva Yagci Acar ^{a,b,c*}

^a Koc University, Graduate School of Materials Science and Engineering, Rumelifeneri Yolu,

Sariyer, 34450 Istanbul, Turkey.

^b Koc University, Department of Chemistry, Rumelifeneri Yolu, Sariyer, 34450 Istanbul,

Turkey

^c Koc University, KUYTAM, Rumelifeneri Yolu, Sariyer,34450 Istanbul, Turkey

*Corresponding author: Havva Yagci Acar, <u>fyagci@ku.edu.tr, telephone: 902123381742</u>, Fax: 902123391559

Fig. S1 Absorbance spectra of PEI/Cys coated Ag_2S QDs synthesized at different PEI/Cys (a), Ag/coating (PEI and Cys) (b) Ag/S mole ratios (c), temperature (d) and Photoluminescence spectra of QD100 and QD0 (e).

Fig. S2 Plot of the integrated luminesence intensities of the reference dye and Ag_2S QDs against the absorbance. Inset shows the slope of each line corresponding to Ag_2S and dye samples.

Fig. S3 Thermogravimetric analysis of PEI/Cys coated Ag₂S (QD60-RT).

Fig. S4 Viability of HeLa cells treated with QD100-70 (QD100) (a), QD80-70 (b), QD60-RT (c) and QD50-RT (d) after 24 hours incubation measured by MTT assay compared to untreated HeLa cells. The data are expressed as mean \pm S.D. (n = 8). (p<0.05).

Coating/Ag (mol/mol)	λ _{em} (max) (nm)	Size ^a (nm)	Band gap (eV)	$\lambda abs(cutoff)^b$ (nm)	FWHM (nm)	Dh ^c (nm)	Zeta pot. (mV)	
2.5	-	2.59	1.55	799	-	48.1 ± 11.1	49.3 ± 2.5	
5	775	2.64	1.52	816	105	49.3 ± 14.1	63.6 ± 4.9	
10	-	2.87	1.40	886	-	13.2 ± 1.8	46.7 ± 4.0	
* Formulation: PEI/Cys=60/40 mol/mol, Ag:S = 4, reaction pH = 10.5, 1h reaction.								
^a Calculated by Brus equation. ^b Absorbance onset. ^c Hydrodynamic diameter measured by								
DLS and reported as the number average.								

Table S1 Effect of coating/Ag ratio on the properties of $Ag_2S QD (QD60)^*$

Table S2 Effect of the A	Ag/S on t	the properties	of Ag_2S	QDs (QD60)*
---------------------------------	-----------	----------------	------------	-------------

Ag	S	$\lambda_{em (max)}$ (nm)	Size ^a (nm)	Band gap (eV)	$\lambda^{abs(cutoff)^b}$ (nm)	FWHM (nm)	Dh ^c (nm)	Zeta pot. (mV)
10	1	716	2.30	1.78	698	104	54.0 ± 15.4	68.1 ± 1.5
6	1	724	2.40	1.69	736	108	23.2 ± 3.1	54.3 ± 5.2
4	1	775	2.64	1.52	816	105	49.3 ± 14.1	63.6 ± 4.9
2.5	1	-	3.04	1.33	932	-	13.3 ± 0.8	47.7 ± 3.9
1	2	-	3.13	1.30	955	-	26.2 ± 10.2	41.7 ± 5.1

* Formulation: PEI/Cys=60/40 mol/mol, Ag:S = 4, reaction pH = 10.5, 1h reaction. ^aCalculated by Brus equation. ^b Absorbance onset. ^c Hydrodynamic diameter measured by DLS and reported as the number average.

Table S3	Properties	of QD50-RT	Ag_2S	QDs *
----------	------------	------------	---------	-------

Rxn Code	T (°C)	Rxn Time	λ_{em} (max) (nm)	Size ^a (nm)	Band gap (eV)	$\begin{array}{c} \lambda \\ abs(cutoff) \\ {}^{b}\left(nm\right) \end{array}$	FWHM (nm)	Dh ^c (nm)	Zeta pot. (mV)
QD50- RT	25	3h	749	2.73	1.47	843	110	28.2 ± 11.7	48.8 ± 0.2

* Formulation: PEI/Cys=50/50 mol/mol, Ag:S = 4, reaction pH = 10.5. aCalculated by Brus equation. ^b Absorbance onset. ^c Hydrodynamic diameter measured by DLS and reported as the number average.

Table S4	Fluoresence	lifetime ana	lysis of	QD60-RT*
----------	-------------	--------------	----------	----------

T1 (ns)	T2 (ns)	T3 (ns)	T4 (ns)	B1 (%)	B2 (%)	B3 (%)	B4 (%)	Weight Average (ns)
11.66	42.17	154.79	1.55	17.54	45.69	35.17	1.60	75.78

*Components of PL decay of Ag₂S QDs were identified to be multiexponential in the form of;

 $A + B1\exp(-i/\tau 1) + B2exp(-i/\tau 2) + B3exp(-i/\tau 3) + B4exp(-i/\tau 4)$

where τ_1 , τ_2 , τ_3 , τ_4 are decay components and B1, B2, B3 and B4 are percentage of related decay component.

Table S5 Composition analysis of Ag₂S QDs

PEI/Cys (mol/mol) ^a	Ag (wt %) ^b	N/S (mol/mol) ^c (Experimental) ^d	N/S (mol/mol) ^c (Theoretical) ^e
80/20	21.5	7.24	7.30
60/40	28.4	5.29	3.39
50/50	24.6	4.71	2.58

^{*a*} Mol ratio was originally calculated as the total number of moles of primary and secondary amines of the branched PEI (25kDa) / moles of thiol coming from Cys. ^{*b*} Measured by ICP OES. ^{*c*} N = (moles of N coming from PEI) + (moles of N coming from Cys). S = moles of S coming from Cys. ^{*d*} Measured by CHNS/O Analyzer. ^{*e*} Based on feed ratio provided in first column.