Bis(diphenylamino)naphthalene Host Materials: Careful Selection of the Substitution Pattern for the Design of Fully Solution-Processed Triple-Layered Electroluminescent Devices

Frédéric Dumur^{a,b*}, Thanh-Tuân Bui^{c*}, Sébastien Péralta^c, Marc Lepeltier^d, Guillaume Wantz^{b,e}, Gjergji Sini^c, Fabrice Goubard^c, Didier Gigmes^a

^a Aix-Marseille Université, CNRS, Institut de Chimie Radicalaire ICR, UMR 7273, F-13397 Marseille – France

^b CNRS, IMS, UMR 5218, F-33400 Talence - France

^c Laboratoire de Physicochimie des Polymères et des Interfaces, Université de Cergy-Pontoise, 5 mail Gay Lussac, 95000 Neuville-sur-Oise, France

^d Institut Lavoisier de Versailles, UMR 8180 CNRS, Université de Versailles Saint-Quentin en Yvelines, 45 avenue des Etats-Unis, 78035 Versailles Cedex – France

^e Bordeaux INP, IMS, UMR 5218, F-33400 Talence – France

E-mail address: frederic.dumur@univ-amu.fr (F. Dumur); tbui@u-cergy.fr (T.-T. Bui)

Supporting information

Figure S1. Experimental and theoretical absorption spectra of compounds **NAP-1,5-DPA** and **NAP-2,6-DPA**. The red shift of the theoretical low energy band for both compounds is due to the well-known bad performance of B3LYP (and other functionals containing low % of Hatree-Fock exchange) to correctly describe the CT transitions. Note the larger redshift (~40 nm) in the case of **NAP-1,5-DPA** (dominantly CT character), as compared to 13 nm in the case of **NAP-2,6-DPA** (dominantly local-naphthalene excitation character).

Table S1. Theoretical dipole moments (Debye) of compounds **NAP-1,5-DPA** and **NAP-2,6-DPA** and of the corresponding "half-compounds" (**NAP-1-DPA** and **NAP-2-DPA**, containing only one DPA substituent) in the ground state and the 1st excited state (vertical values). The dipole moments of the S1 state in the relaxed geometry are given in parentheses). All values are obtained at the B3LYP/6-31G(d,p) level in gas phase.

	GS	S ₁
NAP-1,5-DPA	0.5	1.2 (15)
NAP-2.6-DPA	0.1	0.1 (0.2)
NAP-1-DPA	2.1	12.8
NAP-2-DPA	3.0	11.9