Supplementary Information 1 2 3 Facile Synthesis and Characterization of Reduced Graphene Oxide / Halloysite 4 Nanotubes / Hexagonal Boron Nitride (RGO/HNT/h-BN) Hybrid Nanocomposite 5 and its Potential Application as Hydrogen Storage R. Naresh Muthu ^a, S. Rajashabala ^{a,*} and R. Kannan ^b 6 7 ^a School of Physics, Madurai Kamaraj University, Madurai-625021, Tamil Nadu, India 8 ^b Department of Physics, University College of Engineering, Anna University, Dindigul-624622, Tamil 9 Nadu, India *email: rajashabala@yahoo.com 10 11 **XRD** Analysis

Fig. S1 shows the XRD pattern of graphene oxide (GO) where a strong and sharp diffraction peak is observed at $2\theta = 12.02^{\circ}$ with an interlayer spacing of 0.77 nm along the (002) orientation [1,2].

17

15

16

18 FTIR Analysis

Fig. S2 shows the FTIR spectrum of GO and the characteristic peaks of GO appear at 3423, 2037, 1750, 1627, 1222 and 1051 cm⁻¹ are assigned to the O-H stretching of absorbed H_2O molecules, C-H stretching, C=O stretching vibrations of carbonyl and carboxylic groups, sp² unoxidized C=C stretching, epoxy C-O stretching vibrations and alkoxy C-O stretching vibrations, respectively [3,4]. These modes of vibrations confirm the presence of various oxygen functionalities in the prepared GO.

27 UV/Vis Analysis

25

26

The UV-Vis spectrum of GO has a sharp peak at 233 nm with a shoulder peak at 290 nm. The peak at 233 nm is attributed to the π - π * transition of C=C bonds while the band at 290 nm corresponds to the n - π * transition of C=O bonds which further confirms the presence of carbonyl groups in GO. The absorption peak at 233 nm is red-shifted during the reduction of GO into reduced graphene oxide (RGO) [5].

(c)

(d)

38 Fig. S4 - Elemental mapping images of (a) RGO (b) RGO/h-BN (c) RGO/A-HNT and 39 (d) RGO/A-HNT/h-BN hybrid nanocomposites

AI

40

41 TG Analysis

The TGA curve of GO is depicted in Fig. S5. It is observed that the prepared GO has the initial weight loss at below 100 °C which is attributed to the evaporation of adsorbed water and the second weight loss at 150 °C is due to the rapid decomposition of oxygen containing functional groups. These oxygen containing groups may arise due to the trapping of more water molecules between the GO layers [6]. These findings are well supported by XRD, FTIR and UV-Vis studies.

48

49

Fig. S5 - TGA spectrum of GO

50 FTIR Analysis for Hydrogenated Hybrid Nanocomposites

51 The FTIR spectra of hydrogenated RGO, RGO/h-BN, RGO/A-HNT and RGO/A-HNT/h-52 BN hybrid nanocomposites are shown in Fig. S5. It resembles the FTIR spectra of as synthesized 53 RGO, RGO/h-BN, RGO/A-HNT and RGO/A-HNT/h-BN hybrid nanocomposites except the 54 overall decrease in intensity.

74 References

- 75[1] Shah MSAS, Park AR, Zhang K, Park JH, Yoo PJ. Green Synthesis of Biphasic TiO2
- 76 –Reduced Graphene Oxide Nanocomposites with Highly Enhanced Photocatalytic Activity.
- ACS Appl Mater Interfaces 2012;4:3893–3901
- 78[2] Fan W, Lai Q, Zhang Q, Wang Y. Nanocomposites of TiO2 and Reduced Graphene Oxide as
- 79 Efficient Photocatalysts for Hydrogen Evolution. J Phys Chem C 2011;115:10694–701
- 80[3] Liu G, Gui S, Zhou H, Zeng F, Zhou Y, Ye H. A strong adsorbent for Cu²⁺: graphene oxide
 modified with triethanolamine. Dalton Trans 2014;43:6977–80
- 82[4] Liu X, Pan L, Lv T, Zhu G, Lu T, Sun Z, Sun C. Microwave-assisted synthesis of TiO₂reduced graphene oxide composites for the photocatalytic reduction of Cr(VI). RSC Adv
 2011;1:1245-9
- 85[5] Das AK, Srivastav M, Layek RK, Uddin ME, Jung D, Kim NH, Lee JH. Iodide-mediated
- room temperature reduction of graphene oxide: a rapid chemical route for the synthesis of a
 bifunctional electrocatalystJ Mater Chem A 2014;2:1332–40
- 88[6] Wang R, Wang Y, Xu C, Sun J, Gao L. Facile one-step hydrazine-assisted solvothermal
 synthesis of nitrogen-doped reduced graphene oxide: reduction effect and mechanisms. RSC
 Adv 2013;3:1194–1200
- 91
- 92

93

94

95

96

- 97
- 98

- 99 Figure captions
- 100 Fig. S1 XRD pattern of GO
- 101 Fig. S2 FTIR spectrum of GO
- 102 Fig. S3 UV/Vis spectra of GO and RGO
- 103 Fig. S4 Elemental mapping images of (a) RGO (b) RGO/h-BN (c) RGO/A-HNT and
- 104 (d) RGO/A-HNT/h-BN hybrid nanocomposites
- 105 Fig. S5 TGA spectrum of GO
- 106 Fig. S6 FTIR spectra of hydrogenated (a) RGO (b) RGO/h-BN (c) RGO/A-HNT and
- 107 (d) RGO/A-HNT/h-BN hybrid nanocomposites