$\mathrm{Cu}\left(\right.$ II)-catalyzed cross-dehydrogenative coupling reaction of N^{\prime} acyl arylhydrazines and phosphites

Ji-Quan Zhang, ${ }^{\text {a,c }}$ Yan-Shi Xiong, ${ }^{\text {a }}$ Albert S. C. Chan, ${ }^{\text {a }}$ and Gui Lu,, ab,*
${ }^{\text {a }}$ Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China; Fax: (+86)-20-39943048; E-mail: lugui@mail.sysu.edu.cn.
${ }^{\text {b }}$ Institute of Human Virology, Sun Yat-sen University, Guangzhou, 510080, P. R. China
${ }^{\mathrm{c}}$ College of Pharmacy, Guizhou Medical University, Guiyang, 550004, P. R. China

Fax: (+86)-20-39943048
E-mail: lugui@mail.sysu.edu.cn

Supporting Information

1. General information
2. Preparation of N^{\prime} '-aryl acylhydrazines $1 \mathrm{r}, 1 \mathrm{x}$ and 1 y
3. Typical procedure for the $\mathrm{Cu}(\mathrm{II})$-catalyzed CDC reaction
4. X-ray structure of 3t
5. References
6. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR spectra

1. General information

All the commercial reagents were used as such without further purification. All solvents were used as commercial anhydrous grade without further purification. The flash column chromatography was carried out over silica gel (200-300 mesh). ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR spectra were recorded on a Bruker Avance 400 MHz spectrometer. Chemical shifts in ${ }^{1} \mathrm{H}$ NMR spectra are reported in parts per million (ppm) downfield from the internal standard $\mathrm{Me}_{4} \mathrm{Si}$ (TMS). Chemical shifts in ${ }^{13} \mathrm{C}$ NMR spectra are reported relative to the central line of the chloroform signal ($\delta=77.0 \mathrm{ppm}$). Peaks were labeled as singlet (s), doublet (d), triplet (t), quartet (q), and multiplet (m). High resolution mass spectra were obtained with a Shimadzu LCMS-IT-TOF mass spectrometer. Analytical TLC was performed using EM separations percolated silica gel 0.2 mm layer UV 254 fluorescent sheets. 1a-t and 1s-w were synthesized according to literature methods. ${ }^{1,2}$

2. Preparation of N^{\prime}-aryl acylhydrazines $1 \mathbf{r}, 1 \mathrm{x}$ and 1 y

2-Bromo-N'-phenylbenzohydrazide (1r). To a solution of 2-bromobenzoic acid ($0.8 \mathrm{~g}, 4.0 \mathrm{mmol}$) in DMF $(10 \mathrm{~mL})$ was added EDC $\cdot \mathrm{HCl}(0.85 \mathrm{~g}, 4.4 \mathrm{mmol})$ and $\mathrm{HOBt}(0.59 \mathrm{~g}, 4.4 \mathrm{mmol})$, then phenylhydrazine $(0.44 \mathrm{~g}, 4.0 \mathrm{mmol})$ was added and the reaction mixture was stirred at ambient temperature under nitrogen atmosphere for 24 h . The mixture was poured into $\mathrm{H}_{2} \mathrm{O}(150 \mathrm{~mL})$ and extracted with EtOAc ($30 \mathrm{~mL} \times 3$). The organic phases were combined and washed with saturated $\mathrm{NaHCO}_{3}(30 \mathrm{~mL} \times 2)$ and saturated $\mathrm{NaCl}(30 \mathrm{~mL} \times 1)$ respectively, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solution was concentrated in vacuo and purified by column chromatography on silica gel (eluting with 3:1 to $1: 1$ petroleum ether/ethyl acetate) to give $\mathbf{1 r}$ as white solid ($1.08 \mathrm{~g}, 93 \%$ yield, $\mathrm{mp}: 194-196{ }^{\circ} \mathrm{C}$); ESI-MS (m/z): $291.2[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{dd}, J=10.3$, $5.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{dd}, J=18.1,7.8 \mathrm{~Hz}, 3 \mathrm{H}), 6.36(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta: 167.6,149.6,137.9,133.4,131.9,129.7,129.2,128.2,119.7,119.1,112.8 ;$ HRMS (ESI) calcd. for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{BrN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 291.0127$, found: 291.0133.
tert-Butyl 2-(3,5-dimethylphenyl)hydrazinecarboxylate (1x). To a solution of (3,5-dimethyl phenyl)hydrazine hydrochloride ($1.0 \mathrm{~g}, 5.81 \mathrm{mmol}$) in dry dichloromethane (20 mL) was added $\mathrm{Boc}_{2} \mathrm{O}(1.25 \mathrm{~g}, 5.81 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The resultant solution was then stirred at reflux for 3 h . Removing the reaction solvent afforded a colorless solid, which was washed with hexane and dried in vacuo to give $1 \mathbf{x}$ as white solid (1.21 g , 88% yield, $\mathrm{mp}: 90-92{ }^{\circ} \mathrm{C}$); ESI-MS $(\mathrm{m} / \mathrm{z}): 237.2$ $[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.16(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.90-6.82(\mathrm{~m}, 2 \mathrm{H}), 6.76-6.69(\mathrm{~m}$, $1 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H}), 1.55(\mathrm{~s}, 6 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 156.4,148.4,146.8$, $138.9,138.0$, 122.8, 110.9, 85.2, 81.1, $28.2(\mathrm{~d}, J=9.8 \mathrm{~Hz}), 27.4,21.4(\mathrm{~d}, J=11.3 \mathrm{~Hz})$; HRMS (ESI) calcd. for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 237.1597$, found: 237.1562.
\boldsymbol{N}^{\prime}-Methyl- \boldsymbol{N}^{\prime}-phenylbenzohydrazide (1y)..3 Freshly cut $\mathrm{Na}(0.11 \mathrm{~g}, 4.72 \mathrm{mmol})$ was added to absolute ethanol $(5.0 \mathrm{~mL})$ to obtain a clear solution. Then N '-phenylbenzohydrazide (1a, 1.0 g , $4.72 \mathrm{mmol})$ was added to the clear solution, followed by the addition of $\mathrm{CH}_{3} \mathrm{I}(0.81 \mathrm{~g}, 5.66 \mathrm{mmol})$. The resulting solution was kept at reflux for 24 h . The solution was concentrated and the residue
was dissolved in EtOAc (30 mL), washed with water and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solution was concentrated in vacuo and purified by column chromatography on silica gel (eluting with 3:1 petroleum ether/ethyl acetate) to afford 1e as white solid (0.69 g , 65% yield $)$; ESI-MS $(\mathrm{m} / \mathrm{z}): 237.2$ $[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.87-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.47 (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 3 \mathrm{H}), 6.89(\mathrm{dd}, J=14.5,7.6 \mathrm{~Hz}, 3 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H})$.

3. Typical procedure for the $\mathrm{Cu}(\mathrm{II})$-catalyzed CDC reaction

To a mixture of N^{\prime}-aryl acylhydrazine $(0.3 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.03 \mathrm{mmol}), \mathrm{AgNO}_{3}$ $(0.06 \mathrm{mmol})$, NMO $(0.6 \mathrm{mmol})$ and MS $4 \AA(30 \mathrm{mg})$ in DMSO $(2.0 \mathrm{~mL})$ was added diisopropyl phosphonate (0.6 mmol), the resulting mixture was stirred at ambient temperature for 12-24 h. After completion of the reaction (indicated by TLC), the mixture was quenched with saturated NaCl solution, extracted with EtOAc , and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was purified by flash column chromatography to provide the corresponding product 3a-x.

Diisopropyl (2-benzoyl-1-phenylhydrazinyl)phosphonate (3a). White solid; mp: 166-167 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta: 10.88(\mathrm{~s}, 1 \mathrm{H}), 7.97-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{~m}, 1 \mathrm{H}), 7.54(\mathrm{dd}, J=10.2$, $4.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H})$, $4.70(\mathrm{~s}, 1 \mathrm{H}), 1.29(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.12(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta: 166.3$, $143.3(\mathrm{~d}, J=13.2 \mathrm{~Hz}), 132.5,132.0,128.6,128.5,127.6,122.2,117.0(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 71.4(\mathrm{~d}, J=$ 10.1 Hz), 23.6, 23.3; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 0.15$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}$ $[\mathrm{M}+\mathrm{H}]^{+}: 377.1625$, found: 377.1627.

Diisopropyl (2-benzoyl-1-(4-fluorophenyl)hydrazinyl)phosphonate (3b). White solid; mp: 143$144{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 9.76(\mathrm{~s}, 1 \mathrm{H}), 7.88-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{dd}, J=10.7,4.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.34(\mathrm{~m}, 4 \mathrm{H}), 7.00-6.91(\mathrm{~m}, 2 \mathrm{H}), 4.88(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 6 \mathrm{H}), 1.24(\mathrm{~d}, J=6.1 \mathrm{~Hz}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 167.0,160.6,158.2,139.3(\mathrm{~d}, J=12.7 \mathrm{~Hz}), 131.9(\mathrm{~d}, J=$ 18.8 Hz), 128.2, 127.6, $121.9(\mathrm{~d}, J=6.5 \mathrm{~Hz}), 115.3,73.2(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 23.7(\mathrm{dd}, J=20.3,4.9$ Hz) ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 0.24$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{FN}_{2} \mathrm{O}_{4} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$: 395.1530 , found: 395.1547 .

Diisopropyl (2-benzoyl-1-(4-chlorophenyl)hydrazinyl)phosphonate (3c). White solid; mp: 148$150{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 9.29(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.36(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.88(\mathrm{dd}, J=12.4$, $6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.36(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.25(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: $167.0,141.9(\mathrm{~d}, J=13.2 \mathrm{~Hz}), 132.0,131.9,128.7,128.6,128.3,127.7,120.1(\mathrm{~d}, J=2.2 \mathrm{~Hz}), 73.4$ $(\mathrm{d}, J=5.6 \mathrm{~Hz}), 23.7(\mathrm{dd}, J=18.4,4.9 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta:-0.25$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 411.1235$, found: 411.1245 .

Diisopropyl (2-benzoyl-1-(4-bromophenyl)hydrazinyl)phosphonate (3d). White solid; mp: 160$161{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 9.06(\mathrm{~s}, 1 \mathrm{H}), 7.88-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{dd}, J=11.8,4.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.38(\mathrm{t}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 2 \mathrm{H}), 4.88(\mathrm{dd}, J=12.6,6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.37(\mathrm{~d}, J=6.2$ $\mathrm{Hz}, 6 \mathrm{H}), 1.25(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 167.0,142.4(\mathrm{~d}, J=13.2 \mathrm{~Hz})$, $132.0,131.9,131.6,128.3,127.7,120.3(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 116.1,73.4(\mathrm{~d}, J=5.6 \mathrm{~Hz}), 23.7$ (dd, $J=$ 17.9, 4.9 Hz); ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta:-0.18$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{BrN}_{2} \mathrm{O}_{4} \mathrm{P}$ $[\mathrm{M}+\mathrm{H}]^{+}: 455.0730$, found: 455.0731 .

Diisopropyl (2-benzoyl-1-(3-chlorophenyl)hydrazinyl)phosphonate (3e). White solid; mp: 156$157{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 9.46(\mathrm{~s}, 1 \mathrm{H}), 7.91-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.39-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.03-6.98(\mathrm{~m}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.37(\mathrm{~d}, J=6.1$ $\mathrm{Hz}, 6 \mathrm{H}), 1.25(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 167.0,144.5(\mathrm{~d}, J=13.4 \mathrm{~Hz}$), $134.4,131.9,131.8,129.7,128.3,127.7,123.2,118.5,116.5,73.5(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 23.7(\mathrm{dd}, J=$ $17.9,4.8 \mathrm{~Hz}$); ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta:-0.59$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{P}$ $[\mathrm{M}+\mathrm{H}]^{+}: 411.1235$, found: 411.1242.

Diisopropyl (2-benzoyl-1-(2-chlorophenyl)hydrazinyl)phosphonate (3f). White solid; mp: 96-98 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.47(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.52$ (dd, $J=8.5,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.31(\mathrm{dd}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{td}, J=7.7,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.84(\mathrm{dq}, J=12.5,6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.37(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.27(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 166.3,139.1(\mathrm{~d}, J=13.1 \mathrm{~Hz}), 132.6,132.1,132.0,130.1,128.7,128.7$, $127.4,127.3,73.0(\mathrm{~d}, J=5.8 \mathrm{~Hz}), 23.9(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 23.6(\mathrm{~d}, J=6.8 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR $(162 \mathrm{MHz}$, CDCl_{3}) $\delta: 0.12$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 411.1235$, found: 411.1245.

Diisopropyl (2-benzoyl-1-(4-methoxyphenyl)hydrazinyl)phosphonate (3g). White solid; mp: 124$125{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 9.26(\mathrm{~s}, 1 \mathrm{H}), 7.86-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.35(\mathrm{dd}, J=12.3,5.4 \mathrm{~Hz}, 4 \mathrm{H}), 6.81(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.88(\mathrm{dq}, J=12.5,6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.76$ (s, $3 \mathrm{H}), 1.34(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.24(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 167.0$, $156.7,136.4(\mathrm{~d}, J=12.8 \mathrm{~Hz}), 132.4,131.8,128.3,127.6,123.1(\mathrm{~d}, J=2.2 \mathrm{~Hz}), 114.0,72.9(\mathrm{~d}, J=$ 5.7 Hz), $55.5,23.8(\mathrm{dd}, J=23.3,5.0 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 0.79$; HRMS (ESI) calcd. for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 407.1730$, found: 407.1738 .

Diisopropyl (2-benzoyl-1-(4-nitrophenyl)hydrazinyl)phosphonate (3h). Brown solid; mp: 125$128{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 9.19(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.90-7.85(\mathrm{~m}, 2 \mathrm{H})$, $7.53(\mathrm{dd}, J=10.5,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.35(\mathrm{~m}, 4 \mathrm{H}), 4.91(\mathrm{~s}, 2 \mathrm{H}), 1.40(\mathrm{t}, J=5.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.27(\mathrm{~d}, J$ $=6.4 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 167.1,148.9(\mathrm{~d}, J=13.0 \mathrm{~Hz}), 142.6,132.5,131.4$, 128.6, 127.6, 124.9, 116.5, 74.2 (d, $J=4.8 \mathrm{~Hz}$), 23.7 (dd, $J=20.7,4.6 \mathrm{~Hz}$); ${ }^{31} \mathrm{P}$ NMR (162 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$: $-1.44 ;$ HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 422.1475$, found: 422.1487.

Diisopropyl (1-benzoyl-2-(4-nitrophenyl)hydrazinyl)phosphonate (3h'). White solid; mp: 121$123{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 9.72(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.89-7.82(\mathrm{~m}, 2 \mathrm{H})$, $7.45-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 2 \mathrm{H}), 4.80(\mathrm{dq}, J=12.5,6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.38(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 6 \mathrm{H})$, $1.28(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 149.5,140.5,137.1(\mathrm{~d}, J=11.1 \mathrm{~Hz})$, $131.0,130.1,128.5,126.3,126.1,112.1,75.3(\mathrm{~d}, J=6.3 \mathrm{~Hz}), 23.5(\mathrm{dd}, J=19.9,5.0 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR (162 MHz, CDCl_{3}) $\delta:-7.59$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 422.1475$, found: 422.1484.

Diisopropyl (2-benzoyl-1-(3,5-dimethylphenyl)hydrazinyl)phosphonate (3i). White solid; mp: $161-162{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 9.04(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~s}, 2 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 4.88(\mathrm{dd}, J=12.5,6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.26$ (s, 6H), $1.35(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.24(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 167.0$, $143.0(\mathrm{~d}, J=12.5 \mathrm{~Hz}), 138.2,132.4,131.8,130.0,128.3,127.7,125.4,117.0,73.0(\mathrm{~d}, J=5.5 \mathrm{~Hz})$, $23.8(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 23.6(\mathrm{~d}, J=6.2 \mathrm{~Hz}), 21.5 ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta:-0.41$; HRMS (ESI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 405.1938$, found: 405.1942.

Diisopropyl (2-benzoyl-1-(6-chloropyridin-2-yl)hydrazinyl)phosphonate (3j). White solid; mp: $120-122{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 9.34(\mathrm{~s}, 1 \mathrm{H}), 7.93-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.48(\mathrm{~m}, 2 \mathrm{H})$, 7.44-7.36 (m, 2H), $7.15(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.05-4.94(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{~d}, J$ $=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.28(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 167.1,155.5,155.4$, $148.6,140.2,132.0,128.4,127.8,117.7,108.9,74.0,24.4-23.4$ (m); ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta:-2.63$; HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{ClN}_{3} \mathrm{O}_{4} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 412.1187$, found: 412.1202.

Diisopropyl (2-(4-methoxybenzoyl)-1-phenylhydrazinyl)phosphonate (3l). White solid; mp: 181$182{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 9.26(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.90(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.83(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.22(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta:$ 166.6, 162.4, 143.2 (d, $J=13.0 \mathrm{~Hz}$), 129.6, 128.7, 124.5, 123.2, 118.7 (d, $J=2.3 \mathrm{~Hz}$), 113.5, 73.0 $(\mathrm{d}, J=5.5 \mathrm{~Hz}), 55.4,23.8(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 23.6(\mathrm{~d}, J=6.1 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta:$ 0.14; HRMS (ESI) calcd. for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 407.1730$, found: 407.1735 .

Diisopropyl (2-(4-hydroxybenzoyl)-1-phenylhydrazinyl)phosphonate (3m). White solid; mp: 180$182{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-d_{6}$) $\delta: 10.64(\mathrm{~s}, 1 \mathrm{H}), 10.16(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.28(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $4.95(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.24-1.29(\mathrm{~m}, 6 \mathrm{H}), 1.16-1.07(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta: 166.4,161.3,144.0(\mathrm{~d}, J=13.9 \mathrm{~Hz}), 130.1,128.9,123.5,122.4,117.3$, $115.4,71.9,71.7,23.9(\mathrm{~d}, J=32.7 \mathrm{~Hz}), 23.4-23.3(\mathrm{~m}) ;{ }^{31} \mathrm{P}$ NMR (162 MHz, DMSO- d_{6}) $\delta:-0.97$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 393.1574$, found: 393.1597.

Diisopropyl (2-(4-bromobenzoyl)-1-phenylhydrazinyl)phosphonate (3n). White solid; mp: 176$177{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 10.21(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~s}, 2 \mathrm{H}), 1.34(\mathrm{~d}, J$ $=5.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.22(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 166.0,143.0(\mathrm{~d}, J=12.7$ Hz), 131.3, 130.7, 129.4, 128.7, 126.6, 123.5, 118.8 (d, $J=2.2 \mathrm{~Hz}$), 73.3 (d, $J=5.7 \mathrm{~Hz}$), 23.7 (dd, $J=20.1,4.9 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 0.29$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{BrN}_{2} \mathrm{O}_{4} \mathrm{P}$ $[\mathrm{M}+\mathrm{H}]^{+}: 455.0730$, found: 455.0745 .

Diisopropyl (2-(4-aminobenzoyl)-1-phenylhydrazinyl)phosphonate (3o). White solid; mp: 125$126{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta: 10.39(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{t}, J=7.9$ $\mathrm{Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.76(\mathrm{~s}, 2 \mathrm{H})$, $4.94(\mathrm{~s}, 1 \mathrm{H}), 4.69(\mathrm{~s}, 1 \mathrm{H}), 1.27(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.11(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta: 166.5,152.9,144.2(\mathrm{~d}, ~ J=14.4 \mathrm{~Hz}), 129.8,128.9,122.3,119.2,117.3,113.0,71.9$, 71.6, 24.2, 23.8; ${ }^{31} \mathrm{P}$ NMR (162 MHz , DMSO- d_{6}) $\delta:-0.51$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{P}$ $[\mathrm{M}+\mathrm{H}]^{+}: 392.1734$, found: 392.1732 .

Diisopropyl (2-(4-nitrobenzoyl)-1-phenylhydrazinyl)phosphonate (3p). Yellow solid; mp: 169$170{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 10.70(\mathrm{~s}, 1 \mathrm{H}), 8.10-8.03(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.05$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.36(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.24(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 164.8,149.6,142.7(\mathrm{~d}, J=12.4 \mathrm{~Hz}), 137.3,129.0,128.8,123.8,123.2$, $118.9(\mathrm{~d}, J=2.1 \mathrm{~Hz}), 73.6(\mathrm{~d}, J=5.9 \mathrm{~Hz}), 23.7(\mathrm{~m}) ;{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.11$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 422.1475$, found: 422.1479.

Diisopropyl (2-(3-nitrobenzoyl)-1-phenylhydrazinyl)phosphonate (3q). Yellow solid; ${ }^{1} \mathrm{H}$ NMR
$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 10.98(\mathrm{~s}, 1 \mathrm{H}), 8.72(\mathrm{~s}, 1 \mathrm{H}), 8.25(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.42(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.94(\mathrm{~s}, 2 \mathrm{H}), 1.37(\mathrm{t}, J=7.7 \mathrm{~Hz}, 6 \mathrm{H}), 1.25(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta:$ 164.7, 148.1, $142.4(\mathrm{~d}, J=12.5 \mathrm{~Hz}), 133.6,133.5,129.5,128.9,126.5,124.1,122.8,119.1,119.1$, $74.1(\mathrm{~d}, J=5.9 \mathrm{~Hz}), 23.8(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 23.5(\mathrm{~d}, J=5.9 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta:-$ 0.10; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+}: 444.1295$, found: 444.1282.

Diisopropyl (2-(2-bromobenzoyl)-1-phenylhydrazinyl)phosphonate (3r). White solid; mp: 96-98 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.41(\mathrm{dd}, J=14.9,7.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.33(\mathrm{dd}, J=12.7,7.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.08(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{dd}$, $J=12.1,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.39(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.25(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 167.4,142.6(\mathrm{~d}, J=11.9 \mathrm{~Hz}), 135.7,133.4,131.8,130.0,128.8,127.5,123.5,119.9$, $118.7,73.1(\mathrm{~d}, J=5.0 \mathrm{~Hz}), 23.9(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 23.6(\mathrm{~d}, J=5.8 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta: ~-0.44$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{BrN}_{2} \mathrm{O}_{4} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 455.0730$, found: 455.0742 .

Diisopropyl (2-acetyl-1-phenylhydrazinyl)phosphonate (3s). White solid; mp: 123-125 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.94(\mathrm{~s}, 0.80 \mathrm{H}), 7.80(\mathrm{~s}, 0.20 \mathrm{H}), 7.33(\mathrm{dt}, J=15.8,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-$ $7.23(\mathrm{~m}, 4 \mathrm{H}), 7.12(\mathrm{t}, J=6.8 \mathrm{~Hz}, 0.23 \mathrm{H}), 7.02(\mathrm{~m}, 0.81 \mathrm{H}), 4.83(\mathrm{~s}, 1.54 \mathrm{H}), 4.71(\mathrm{~m}, 0.46 \mathrm{H}), 2.09$ $(\mathrm{s}, 2.35 \mathrm{H}), 2.05(\mathrm{~s}, 0.65 \mathrm{H}), 1.34(\mathrm{dd}, J=10.5,6.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.26(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1.18 \mathrm{H}), 1.18(\mathrm{~d}, J$ $=6.1 \mathrm{~Hz}, 4.86 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 170.2,142.8(\mathrm{~d}, J=12.7 \mathrm{~Hz}), 129.0,128.7$, $124.5,123.2,120.0,118.2,73.1,23.8,23.5(\mathrm{~d}, J=6.2 \mathrm{~Hz}), 20.9 ;{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: 0.43; HRMS (ESI) calcd. for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+}: 337.1288$, found: 337.1272.
tert-Butyl 2-(diisopropoxyphosphoryl)-2-phenylhydrazinecarboxylate (3t). White solid; mp: 105$107{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.33-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.03(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H})$, 4.87-4.71 (m, 2H), $1.47(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 9 \mathrm{H}), 1.37(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.21(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 155.5,143.6,128.7,123.3,118.5,81.3,72.6,28.2,23.5-23.8(\mathrm{~m})$, 23.5; ${ }^{31} \mathrm{P}$ NMR (162 MHz, MeOD) $\delta:-0.13$; HRMS (ESI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 395.1706, found: 395.1722 .
tert-Butyl 2-(diisopropoxyphosphoryl)-2-(4-fluorophenyl)hydrazinecarboxylate (3u). White solid; $\mathrm{mp}: 81-83{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.33-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.97(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{~s}$, $1 \mathrm{H}), 4.78(\mathrm{~s}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}), 1.36(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.23(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 155.4,139.5,121.2,115.5,115.3,81.5,72.5,28.2,23.8(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 23.6(\mathrm{~d}, J$ $=5.1 \mathrm{~Hz}$); ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{MeOD}$) $\delta:-0.44$; HRMS (ESI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{FN}_{2} \mathrm{O}_{5} \mathrm{PNa}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 413.1612$, found: 413.1625 .
tert-Butyl 2-(4-chlorophenyl)-2-(diisopropoxyphosphoryl)hydrazinecarboxylate (3v). White solid; mp: 75-76 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{~s}, 3 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 4.79(\mathrm{~s}, 2 \mathrm{H})$, $1.49(\mathrm{~s}, 9 \mathrm{H}), 1.37(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.23(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : $155.3,128.7,119.4,100.0,81.3,73.0,28.2,23.6-23.8(\mathrm{~m}) ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{MeOD}$) $\delta:-1.60$; HRMS (ESI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{ClN}_{2} \mathrm{O}_{5} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+}: 429.1317$, found: 429.1325 .
tert-Butyl 2-(4-bromophenyl)-2-(diisopropoxyphosphoryl)hydrazinecarboxylate (3w). Brown solid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.38(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.61(\mathrm{~s}$, $1 \mathrm{H}), 4.78(\mathrm{~s}, 2 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}), 1.37(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.23(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta: 143.4,131.0,122.2,115.7,113.6,73.0(\mathrm{~d}, J=5.4 \mathrm{~Hz}), 70.3(\mathrm{~d}, J=4.9 \mathrm{~Hz})$,
26.5, $21.9(\mathrm{~d}, J=17.7 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta:-1.59$; HRMS (ESI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{BrN}_{2} \mathrm{O}_{5} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+}: 473.0811$, found: 473.0835.
tert-Butyl 2-(diisopropoxyphosphoryl)-2-(3,5-dimethylphenyl)hydrazinecarboxylate (3x). White solid; mp: 91-94 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 6.93(\mathrm{~s}, 2 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 4.79$ ($\mathrm{s}, 2 \mathrm{H}$), $2.28(\mathrm{~s}, 6 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}), 1.37(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.24(\mathrm{t}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 155.4,143.3(\mathrm{~d}, J=13.0 \mathrm{~Hz}$), 138.3, 125.2, 116.5, 81.3, 72.6, 28.2, 23.9, 23.7 (dd, $J=25.5,4.9 \mathrm{~Hz}$), 21.5; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{MeOD)} \delta:-0.55$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+}: 423.2019$, found: 423.2030.

Diethyl (2-benzoyl-1-phenylhydrazinyl)phosphonate (3y). White solid; mp: 140-141 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 9.81(\mathrm{~s}, 1 \mathrm{H}), 7.89-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.31(\mathrm{dd}, J=12.4,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{t}, J=4.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.31-4.20$ (m, 4H), $1.26(\mathrm{t}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 166.9,142.9(\mathrm{~d}, J=12.9 \mathrm{~Hz})$, $132.0,131.9,128.9,128.3,127.6,123.8,119.2(\mathrm{~d}, J=2.1 \mathrm{~Hz}), 64.1(\mathrm{~d}, J=5.4 \mathrm{~Hz}), 16.0(\mathrm{~d}, J=$ 7.4 Hz); ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 2.43$; HRMS (ESI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 371.1131, found: 371.1144.

Diisopropyl (1-phenylhydrazinyl)phosphonate (4). Brown oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : $7.48(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{dq}, J=12.5,6.2 \mathrm{~Hz}$, $2 \mathrm{H}), 4.56-4.17(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.24(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 145.1(\mathrm{~d}, J=13.2 \mathrm{~Hz}), 128.6,122.7,119.3(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 72.1(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 23.7$ (dd, $J=24.8,4.8 \mathrm{~Hz}$); ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta:-2.68$; HRMS (ESI) calcd. for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}$ $[\mathrm{M}+\mathrm{H}]^{+}: 273.1363$, found: 273.1368 .

4. X-ray structure of $3 \mathbf{t}$

The single crystal of $\mathbf{3 t}$ was prepared from hexane.

Identification code	zjq-150203-4
Empirical formula	$\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{P}$
Formula weight	372.40
Temperature	100 K
Wavelength	$1.54184 \AA$
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	$\mathrm{a}=9.7307(6) \AA \quad \alpha=68.269(5)^{\circ}$.
	$\mathrm{b}=10.8147$ (5) $\AA \quad \beta=72.364(6)^{\circ}$.
	$\mathrm{c}=11.1682(8) \AA \quad \gamma=69.847(5)^{\circ}$.
Volume	1003.97 (11) \AA^{3}
Z	2
μ	$1.453 \mathrm{~mm}^{-1}$
$F(000)$	401.9
Crystal size	$0.2 \times 0.05 \times 0.05 \mathrm{~mm}^{3}$
Theta range for data collection	8.7 to 143.2°
Index ranges	$-10 \leq \mathrm{h} \leq 11,-8 \leq \mathrm{k} \leq 13,-13 \leq 1 \leq 13$
Reflections collected	7674
Independent reflections	$3778\left[\mathrm{R}_{\mathrm{int}}=0.0223, \mathrm{R}_{\text {sigma }}=0.0262\right]$
Data / restraints / parameters	3778 / 0 / 232
Goodness-of-fit on F^{2}	1.052
Final R indices [$\mathrm{I}>2$ sigma (I)]	$\mathrm{R}_{1}=0.0326, \mathrm{wR}_{2}=0.0819$
R indices (all data)	$\mathrm{R}_{1}=0.0365, \mathrm{wR}_{2}=0.0854$
Largest diff. peak and hole	0.39 and -0.41 e. \AA^{-3}

Figure 1. X-ray crystal structure of 3t.

5. References

1. J.-Q. Zhang, G.-B. Huang, J. Weng, G. Lu and A. S. C. Chan, Org. Biomol. Chem., 2015, 13, 20552063.
2. (a) L. A. Carpino, P. H. Terry and P. J. Crowley, J. Org. Chem., 1961, 26, 4336-4340. (b) H. Jasch,
S. B. Hoefling and M. R. Heinrich, J. Org. Chem., 2012, 77, 1520-1532.
3. S. Han, Y. Shin, S. Sharma, N. K. Mishra, J. Park, M. Kim, M. Kim, J. Jang and I. S. Kim, Org. Lett., 2014, 16, 2494-2497.

6. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR spectra

2-Bromo- N '-phenylbenzohydrazide (1r)

tert-Butyl 2-(3,5-dimethylphenyl)hydrazinecarboxylate (1x)

華

N'-Methyl-N'-phenylbenzohydrazide (1y)

Diisopropyl (2-benzoyl-1-phenylhydrazinyl)phosphonate (3a)

जi

Diisopropyl (2-benzoyl-1-(4-fluorophenyl)hydrazinyl)phosphonate (3b)

Diisopropyl (2-benzoyl-1-(4-chlorophenyl)hydrazinyl)phosphonate (3c)

웅

Diisopropyl (2-benzoyl-1-(4-bromophenyl)hydrazinyl)phosphonate (3d)

Bity io i

Diisopropyl (2-benzoyl-1-(3-chlorophenyl)hydrazinyl)phosphonate (3e)

Diisopropyl (2-benzoyl-1-(2-chlorophenyl)hydrazinyl)phosphonate (3f)

~~
్ㅜ우운ํㅜㅇ․․
두NN N N
웅్ల్ర్ర్ర్ర

Diisopropyl (2-benzoyl-1-(4-methoxyphenyl)hydrazinyl)phosphonate (3g)

Diisopropyl (2-benzoyl-1-(4-nitrophenyl)hydrazinyl)phosphonate (3h)

-i

Diisopropyl (1-benzoyl-2-(4-nitrophenyl)hydrazinyl)phosphonate (3h')

Diisopropyl (2-benzoyl-1-(3,5-dimethylphenyl)hydrazinyl)phosphonate (3i)

Diisopropyl (2-benzoyl-1-(6-chloropyridin-2-yl)hydrazinyl)phosphonate (3j)

Diisopropyl (2-(4-methoxybenzoyl)-1-phenylhydrazinyl)phosphonate (3l)

蒿翯

$\begin{array}{r}-166.618 \\ -162.414 \\ \\ \\ <_{143.161}^{143.290} \\ \\ \hline\end{array}$

\%
$\stackrel{\circ}{\circ}$

ตูตูู

Diisopropyl (2-(4-hydroxybenzoyl)-1-phenylhydrazinyl)phosphonate (3m)

Diisopropyl (2-(4-bromobenzoyl)-1-phenylhydrazinyl)phosphonate (3n)

Diisopropyl (2-(4-aminobenzoyl)-1-phenylhydrazinyl)phosphonate (3o)

$\stackrel{\circ}{0.5}$
(2)

Diisopropyl (2-(4-nitrobenzoyl)-1-phenylhydrazinyl)phosphonate (3p)

รัค
ตู่ ู่

Diisopropyl (2-(3-nitrobenzoyl)-1-phenylhydrazinyl)phosphonate (3q)

Diisopropyl (2-(2-bromobenzoyl)-1-phenylhydrazinyl)phosphonate (3r)

Diisopropyl (2-acetyl-1-phenylhydrazinyl)phosphonate (3s)

tert-Butyl 2-(diisopropoxyphosphoryl)-2-phenylhydrazinecarboxylate (3t)

tert-Butyl 2-(diisopropoxyphosphoryl)-2-(4-fluorophenyl)hydrazinecarboxylate (3u)

[^0]

tert-Butyl 2-(4-chlorophenyl)-2-(diisopropoxyphosphoryl)hydrazinecarboxylate (3v)

tert-Butyl 2-(4-bromophenyl)-2-(diisopropoxyphosphoryl)hydrazinecarboxylate (3w)

tert-Butyl 2-(diisopropoxyphosphoryl)-2-(3,5-dimethylphenyl)hydrazinecarboxylate (3x)

-155.405
-143.337
-138.208
-125.235
-116.491


```
NNNN
```


Diethyl (2-benzoyl-1-phenylhydrazinyl)phosphonate (3y)

Diisopropyl (1-phenylhydrazinyl)phosphonate (4)

\circ

[^0]:

