Supporting Information

Heteroaryl chalcone allied triazole conjugated organosilatranes: Synthesis, Spectral Analysis, Antimicrobial Screening, Photophysical and Theoretical Investigations

Gurjaspreet Singh^{a, *}, Aanchal Arora^a, Sunita Rani^a, Indresh Kumar Maurya^b, Darpandeep Aulakh^c, Mario Wriedt^{c*}

^aDepartment of Chemistry and Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India

^bDepartment of Microbial Biotechnology, Panjab University, Chandigarh, 160014, India

^cFunctional Materials Design & X-ray Diffraction Lab, Department of Chemistry & Biomolecular Science, Clarkson University, Box 5810, Potsdam, NY 13699, USA

*Corresponding Authors

Dr. Gurjaspreet Singh
Associate Professor
Department of Chemistry and Centre of Advanced Studies
Panjab University, Chandigarh, India
Email: gjpsingh@pu.ac.in
Dr. Mario Wreidt
Department of Chemistry & Biomolecular Science, Box 5810
Clarkson University, Potsdam, NY 13699, USA
Email: <u>mwriedt@clarkson.edu</u>

Table of Contents

1.	General Procedure for the synthesis of 3-azidopropyltriethxoysilaneS5	
2.	Concentration effect on Absorption spectra of organosilatrane 8b in	
	DMF	.S6
3.	¹ H NMR spectrum of compound 3a	S7
4.	¹³ C NMR spectrum of compound 3a	S7
5.	¹ H NMR spectrum of compound 3b	S8
6.	¹³ C NMR spectrum of compound 3b	S8
7.	¹ H NMR spectrum of compound 3c	.S9
8.	¹³ C NMR spectrum of compound 3c	S9
9.	¹ H NMR spectrum of compound 4a	S10
10	¹³ C NMR spectrum of compound 4a	.S10
11	¹ H NMR spectrum of compound 4b	S11
12	¹³ C NMR spectrum of compound 4b	S 11
13	¹ H NMR spectrum of compound 4c	.S12
14	¹³ C NMR spectrum of compound 4c	S12
15	¹ H NMR spectrum of compound 5a	S13
16	¹³ C NMR spectrum of compound 5a	S13
17	¹ H NMR spectrum of compound 5b	S14
18	¹³ C NMR spectrum of compound 5b	S14
19	. ¹ H NMR spectrum of compound 5c	.S15

20. ¹³ C NMR spectrum of compound 5c	
21. ¹ H NMR spectrum of compound 6a	
22. ¹³ C NMR spectrum of compound 6a	S16
23. ¹ H NMR spectrum of compound 6b	S17
24. ¹³ C NMR spectrum of compound 6b	S17
25. ¹ H NMR spectrum of compound 6c	S18
26. ¹³ C NMR spectrum of compound 6c	S18
27. ¹ H NMR spectrum of compound 7a	S19
28. ¹³ C NMR spectrum of compound 7a	S19
29. ¹ H NMR spectrum of compound 7b	S20
30. ¹³ C NMR spectrum of compound 7b	S20
31. ¹ H NMR spectrum of compound 7c	
32. ¹³ C NMR spectrum of compound 7c	S21
33. ¹ H NMR spectrum of compound 8a	\$22
34. ¹³ C NMR spectrum of compound 8a	S22
35. ¹ H NMR spectrum of compound 8b	\$23
36. ¹³ C NMR spectrum of compound 8b	S23
37. ¹ H NMR spectrum of compound 8c	
38. ¹³ C NMR spectrum of compound 8c	S24
39. ORTEP showing the crystal structure of 7a with displacement of	ellipsoids drawn at

41.	Selected bond distances $[Å]$ and angles $[deg]$ for $7a$	and 8	Ba. X	= 0	(7a)	and
	S(8a)		S27			
42.	Mass spectrum of compound 5a		S28			
43.	Mass spectrum of compound 7a		S29)		
44.	Mass spectrum of compound 7b		S30)		
45.	Mass spectrum of compound 7c		S31			
46.	Mass spectrum of compound 8a		S32			
47.	Mass spectrum of compound 8b		S33			
48.	Mass spectrum of compound 8c	• • • • • • • • •	S34			

Synthesis of 3-Azidopropyltriethoxysilane (AzPTES)

To the stirred solution of sodium azide (5.4 g, 83.1 mmol) in dry DMF (150 ml), (5.0 g, 20.7 mmol) of 3-chloropropyltriethoxysilane was added dropwise within 10 min. The reaction mixture was stirred at 90 °C for 4 h. The removal of DMF was carried out under reduced pressure. The crude mixture was then diluted with diethylether and filtered under inert atmosphere. The diethyl ether was removed in vacuo and the crude oil obtained was distilled at 130 °C under reduced pressure of 5 mm of Hg resulting into AzPTES as colourless oil. Yield: 91 %; NMR (300 MHz, CDCl₃, 25 °C): $\delta_{\rm H} = 0.57$ (t, 2H, -Si*CH*₂-, *J* = 8.1 Hz), 1.15 (d, 9H, -OCH₂*CH*₃, *J* = 7.1 Hz), 1.63 (m, 2 H, -C*CH*₂*C*-), 3.18 (t, 2H, N₃*CH*₂*CH*₂, *J* = 6.9 Hz), 3.73 (q, 6H, -O*CH*₂*CH*₃, *J* = 7.0 Hz) ppm.

Figure S1.

Comments on A alert: Various attempts to rectify the A alert (observed/unique reflections (too) low 19% for **7a** and 26% for **8a**) were made, however due to the weakly diffracting crystals, the data quality could not be improved in these cases. To obtain better signal to noise ratio, the data was cut at 1.1 Å, which eliminated the alert, however, this gave rise to many resolution alerts. As the purpose of this crystal structure determination is to determine the general connectivity of atoms and their conformations, we believe that the obtained results will present reasonable structure models. In addition, attempts were made to grow bigger/better crystals as well but similar data sets were obtained.

Figure S2.

Figure S3.

Table S1.

	7a	8a
Si(1)-O(1)	1.658(4)	1.656(3)
Si(1)-O(2)	1.668(4)	1.661(3)
Si(1)-O(3)	1.673(4)	1.664(3)
Si(1)-C(7)	1.879(5)	1.857(5)
Si(1)-N(1)	2.138(5)	2.151(5)
X(1)-C(22)	1.375(6)	1.724(5)
X(1)-C(25)	1.357(7)	1.711(6)
O(1)-Si(1)-O(2)	117.8(2)	118.27(17)
O(2)-Si(1)-O(3)	119.0(2)	118.81(18)
O(3)-Si(1)-O(2)	119.4(2)	118.44(18)
O(1)-Si(1)-N(1)	83.8(2)	83.03(19)
O(2)-Si(1)-N(1)	83.67(19)	83.55(18)
O(3)-Si(1)-N(1)	83.08(18)	82.21(17)
O(1)-Si(1)-C(7)	96.5(2)	97.5(2)
O(2)-Si(1)-C(7)	96.4(2)	98.44(19)
O(3)-Si(1)-C(7)	96.7(2)	95.3(2)
C(7)-Si(1)-N(1)	179.7(2)	177.3(2)

Mass spectrum of 5a.

Mass spectrum of 7a.

Mass spectrum of 7b.

Mass spectrum of 7c.

Mass spectrum of 8a.

Mass spectrum of 8b.

Mass spectrum of 8c.