Supporting Information

The Salt-Based Catalytic Enhancement of CO₂ Absorption by a Tertiary Amine Medium

Dharmalingam Sivanesan^a, Young Eun Kim^a, Min Hye Youn^a, Ki Tae Park^a, Hak-Joo Kim^a, Andrews Nirmala Grace^{b,*}, Soon Kwan Jeong^{a,*}

^aGreen Energy Process Laboratory, Korea Institute of Energy Research, 152, Gajeong-ro, Yuseong-gu, Daejeon 305-343, Korea.

^bCentre for Nanotechnology Research, VIT University, Vellore 632014, Tamil Nadu, India.

Contents

Entry	Title	Page No
1	Scheme S1: Synthesis of 1	S4
2	Scheme S2: Synthesis of 3	S4
3	Table 1. Crystal data and structure refinement for 2	S5
4	Table 2. Bond lengths $[Å]$ and angles $[\circ]$ for 2	S6
5	Fig. S1. Single crystal X-ray structure of 1 with weak hydrogen	S 8
	bonding between the nitrate anion and protonated amine	
6	Fig. S2. FT-IR spectra of catalysts 1-3. Top (1), middle (2) and bottom (3)	S9
7	Fig. S3. ¹³ C NMR spectra of MDEA, MDEA with CO ₂ , and MDEA	S10
	with 1 and CO ₂	
8	Fig S4. ¹ H NMR spectrum of A	S11
9	Fig. S5. ¹ H NMR spectrum of B	S11
10	Fig. S6. ¹ H NMR spectrum of C	S12
11	Fig. S7. ¹ H NMR spectrum of 2	S12
12	Fig. S8. ¹ H NMR spectrum of D	S13
13	Fig. S9. ¹ H NMR spectrum of E	S13
14	Fig. S10. ¹ H NMR spectrum of F	S14
15	Fig. S11. ¹ H NMR spectrum of 1	S14
16	Fig. S12. ¹ H NMR spectrum of G	S15
17	Fig. S13. ¹ H NMR spectrum of H	S15
18	Fig. S14. ¹ H NMR spectrum of I	S16
19	Fig. S15. ¹ H NMR spectrum of 3	S16

Synthesis of catalysts

Synthesis of intermediate A: To a solution of N1-(2-aminoethyl)-N1-methylethane-1,2-diamine (2.00 g, 17.0 mmol) in EtOH, 3-nitrobenzaldehdye (5.15 g, 34.1 mmol) was added under N₂ atmosphere and heated at 60 °C for 12 h. After cooling to room temperature, resulting yellow crystals were filtered and dried. Yield = 5.12 g, 92 %. To a solution of imine(4.00 g, 10.4 mmol) in MeOH, NaBH₄ (1.57 g, 41.7 mmol) was added and stirred at RT for 12 h under N₂ atmosphere. After completion of the reaction, monitored by TLC, MeOH was reduced under reduced pressure and it was diluted with CH₂Cl₂ and DM water. The organic layer was dried over Na₂SO₄ and concentrated under vacuum. It afforded yellow sticky mass which was dried under high vacuum. Yield = 3.99 g, 99%. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.21 (s, 2H), 8.14 – 8.00 (m, 2H), 7.66 (dd, *J* = 7.6, 0.8 Hz, 2H), 7.47 (t, *J* = 7.9 Hz, 2H), 3.91 (s,4H), 2.72 (dd, *J* = 6.5, 5.3 Hz, 4H), 2.54 (dd, *J* = 6.4, 5.4 Hz, 4H), 2.21 (s, 3H), 2.06 (s, 4H).

Synthesis of intermediate B: To a solution of intermediate A (4.50 g, 11.2 mmol) in CH₃CN (120 mL) and acetic acid(30 mL), formaldehyde solution (16.6 mL) was added and stirred for 2 h. NaBH₄ (2.49 g, 67.0 mmol) was added pinch by pinch at 0 °C and this temperature was maintained for 2 h and continued the stirring at RT for 12 h. The white precipitate was filtered and the filtrate was concentrated under vacuum. The filtrate pH was adjusted to basic with NaOH solution and the yellow solution was extracted with CH₂Cl₂. The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. Yield = 4.00 g, 83%. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.20 (t, *J* = 1.9 Hz, 2H), 8.09 (ddd, *J* = 8.2, 2.4, 1.1 Hz, 2H), 7.66 (ddd, *J* = 7.7, 1.8, 1.0 Hz, 2H), 7.47 (t, *J* = 7.9 Hz, 2H), 3.61 (s, 4H), 2.55 (q, *J* = 2.8 Hz, 8H), 2.24 (s, 3H), 2.23 (s, 6H).

Synthesis of intermediate C: To a mixture of Pd/C (0.274 g) and B (2.74 g, 93.1 mmol) in EtOH (55 mL), hydrazine hydrate (30.0 mL) was added under N₂ atmosphere. Then mixture temperature was slowly increased to 60 °C at this temperature stirred for 8 h. After cooling to RT, the mixture was filtered using celite bed and concentrated under vacuum. Resulting colorless liquid was extracted with CH_2Cl_2 and dried over Na₂SO₄ and concentrated. Yield = 1.20 g, 45%. ESI-Mass: (M+1= 356.02). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.14 – 7.04 (m, 2H), 6.73 – 6.65 (m, 4H), 6.60 – 6.55 (m, 2H), 3.43 (s, 4H), 2.65 – 2.46 (m, 8H), 2.25 (s, 3H), 2.22 (s, 6H).

Synthesis of 2: To a solution of C (0.300 g,) in EtOH (15 mL) 0.1 M HNO₃ solution was added and stiireed for 12 h. The solvents were rmoved under reduced pressure and resulting light yello solution was triturated with diethylether to get as light yellow solid. Yield = 0.289 g, 71%. ¹H NMR (400 MHz, DMSO- d_6) δ 7.00 (t, J = 7.6 Hz, 2H), 6.57 – 6.46 (m, 6H), 5.15 (s, 4H), 3.57 (s, 4H), 2.98 (m, 4H), 2.73 (s, 2H), 2.53 – 2.43 (m, 2H), 2.29 (s, 9H). ¹³C NMR (101 MHz, DMSO) δ 147.25, 129.37, 118.02, 117.36, 115.42, 113.85, 51.92, 46.50, 42.88, 41.93, 36.24.

Synthesis of 1: Similar synthetic procedure of **2** was followed to synthesis **1** from 2-nitrobenzaldehyde. Scheme S1 (Amine) Yield = 0.221 g, 47%. ESI-Mass: (M+Na = 378.02) ¹H NMR (400 MHz, DMSO- d_6) δ 6.97 (td, J = 7.6, 1.6 Hz, 2H), 6.90 (dd, J = 7.4, 1.6 Hz, 2H), 6.60 (dd, J = 7.9, 1.2 Hz, 2H), 6.48 (td, J = 7.3, 1.2 Hz, 2H), 5.29 (s, 4H), 3.33 (s, 4H), 2.55 – 2.33 (m, 8H), 2.12 (d, J = 2.4 Hz, 3H), 2.06 (s, 6H). (Amine salt - **1**): Yield = 0.350 g, 86%. ¹H NMR (300 MHz, Chloroform-d) δ 7.15 (d, J = 3.9 Hz, 2H), 6.98 (dt, J = 7.5, 2.0 Hz, 2H), 6.88 (d, J = 7.7 Hz, 2H), 6.62 – 6.43 (m, 2H), 3.37 (s, 4H), 2.47 – 2.34 (m, 8H), 2.15 – 2.00 (m, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 147.05, 135.93, 129.06, 122.90, 116.37, 62.17, 54.88, 41.94, 36.64, 33.75.

Synthesis of 3 : Similar synthetic procedure of 2 was followed to synthesis the ligand from 4-

nitrobenzaldehyde. Scheme S2 (Amine) Yield =0.363 g, 87%. ESI-Mass: (M+Na = 378.02). ¹H NMR (300 MHz, Chloroform-*d*) δ 7.00 (d, *J* = 8.0 Hz, 4H), 6.55 (d, *J* = 8.3 Hz, 4H), 3.60 (s, 4H), 2.42 (td, *J* = 6.4, 2.7 Hz, 8H), 2.13 (s, 3H), 2.11 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 131.33, 128.35, 115.97, 113.95, 99.98, 77.49, 65.02, 55.59, 46.59, 41.59, 34.06. (Amine salt – **3**): Yield = 0.387 g, 95 %. ¹H NMR (300 MHz, DMSO-*d*₆) δ 7.10 – 6.92 (m, 4H), 6.54 (dd, *J* = 17.8, 9.7 Hz, 4H), 5.11 (s, 4H), 3.89 (s, 4H), 2.99 (m, 4H), 2.68 (m, 4H), 2.39 (s, 3H), 2.26 (s, 6H). ¹³C NMR (75 MHz, DMSO) δ 148.99, 131.45, 130.05, 121.51, 118.99, 115.73, 66.08, 56.64, 51.25, 44.90, 36.14.

Scheme S1: Synthesis of 1

Reagents: a. 2-nitrobenzaldehyde, EtOH, NaBH₄, MeOH b. HCHO, NaBH₄, CH₃CN/AcOH c. Pd/C, Hydrazine hydrate d. 0.1 M HNO₃

Scheme S2: Synthesis of 3

Reagents: a. 4-nitrobenzaldehyde, EtOH, NaBH₄, MeOH b. HCHO, NaBH₄, CH₃CN/AcOH c. Pd/C, Hydrazine hydrate d. 0.1 M HNO₃

Table 1. Crystal data and structure refinement	for 2		
CCDC number	1454963		
Empirical formula	C21 H35 N7 O6		
Formula weight	481.56		
Temperature	273(2) K		
Wavelength	0.71073 Å		
Crystal system	Orthorhombic		
Space group	Pna2(1)		
Unit cell dimensions	a = 14.3139(5) Å	α=90°	
	b = 16.8590(5) Å	β= 90°	
	c = 10.2559(4) Å	$\gamma = 90^{\circ}$	
Volume	2474.93(15) Å ³		
Z	4		
Density (calculated)	1.292 Mg/m ³		
Absorption coefficient	0.096 mm ⁻¹		
F(000)	1032		
Crystal size	0.17 x 0.14 x 0.11 mm ³		
Theta range for data collection	2.73 to 27.94°.		
Index ranges	-18<=h<=18, -21<=k<=22, -13<=l<=13		
Reflections collected	52356		
Independent reflections	5894 [R(int) = 0.0340]		
Completeness to theta = 27.94°	99.3 %		
Absorption correction	None		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	5894 / 1 / 312		
Goodness-of-fit on F ²	0.755		
Final R indices [I>2sigma(I)]	R1 = 0.0380, wR2 = 0.0998		
R indices (all data)	R1 = 0.0450, wR2 = 0.1074		
Absolute structure parameter	0.2(8)		
Largest diff. peak and hole	0.504 and -0.432 e.Å ⁻³		

Bond leng	gths [Å]	Bond angles [°]	
N(1)-C(2)	1.463(2)	C(2)-N(1)-C(3)	109.47(12)
N(1)-C(3)	1.468(2)	C(2)-N(1)-C(1)	111.20(13)
N(1)-C(1)	1.464(2)	C(3)-N(1)-C(1)	111.39(13)
N(7)-O(4)	1.237(2)	O(4)-N(7)-O(6)	120.89(14)
N(7)-O(6)	1.248(2)	O(4)-N(7)-O(5)	120.40(15)
N(7)-O(5)	1.2567(19)	O(6)-N(7)-O(5)	118.70(15)
N(6)-O(2)	1.231(2)	O(2)-N(6)-O(1)	122.05(16)
N(6)-O(1)	1.241(2)	O(2)-N(6)-O(3)	119.12(15)
N(6)-O(3)	1.2775(19)	O(1)-N(6)-O(3)	118.83(15)
N(2)-C(6)	1.492(2)	C(6)-N(2)-C(4)	111.07(14)
N(2)-C(4)	1.506(2)	C(6)-N(2)-C(8)	110.22(13)
N(2)-C(8)	1.519(2)	C(4)-N(2)-C(8)	111.78(13)
N(3)-C(7)	1.499(2)	C(7)-N(3)-C(5)	111.15(13)
N(3)-C(5)	1.506(2)	C(7)-N(3)-C(15)	108.74(13)
N(3)-C(15)	1.522(2)	C(5)-N(3)-C(15)	113.25(13)
N(4)-C(13)	1.373(2)	N(1)-C(3)-C(5)	111.97(13)
N(5)-C(20)	1.380(2)	N(1)-C(2)-C(4)	112.10(13)
C(3)-C(5)	1.519(2)	C(9)-C(8)-N(2)	111.64(13)
C(2)-C(4)	1.522(2)	N(2)-C(4)-C(2)	111.78(13)
C(8)-C(9)	1.510(2)	N(3)-C(5)-C(3)	111.47(13)
C(9)-C(14)	1.390(2)	C(14)-C(9)-C(10)	120.32(16)
C(9)-C(10)	1.394(3)	C(14)-C(9)-C(8)	119.91(16)
C(14)-C(13)	1.404(2)	C(10)-C(9)-C(8)	119.76(16)
C(13)-C(12)	1.405(3)	C(9)-C(14)-C(13)	120.92(17)
C(12)-C(11)	1.386(3)	N(4)-C(13)-C(12)	121.37(16)
C(10)-C(11)	1.390(3)	N(4)-C(13)-C(14)	120.19(16)
C(16)-C(21)	1.387(2)	C(12)-C(13)-C(14)	118.33(16)
C(16)-C(17)	1.397(2)	C(11)-C(12)-C(13)	120.13(17)
C(16)-C(15)	1.502(2)	C(11)-C(10)-C(9)	118.90(17)
C(21)-C(20)	1.396(2)	C(10)-C(11)-C(12)	121.37(17)
C(20)-C(19)	1.405(2)	C(21)-C(16)-C(17)	119.79(16)
C(17)-C(18)	1.392(3)	C(21)-C(16)-C(15)	119.49(15)

Table 2. Bond lengths [Å] and angles [°] for 2

		1	
C(18)-C(19)	1.386(3)	C(17)-C(16)-C(15)	120.70(16)
N(1)-C(2)	1.463(2)	C(16)-C(21)-C(20)	121.64(15)
N(1)-C(3)	1.468(2)	N(5)-C(20)-C(21)	120.18(16)
N(1)-C(1)	1.464(2)	N(5)-C(20)-C(19)	121.48(16)
N(7)-O(4)	1.237(2)	C(21)-C(20)-C(19)	118.32(16)
N(7)-O(6)	1.248(2)	C(16)-C(17)-C(18)	118.85(17)
N(7)-O(5)	1.2567(19)	C(16)-C(15)-N(3)	113.21(14)
N(6)-O(2)	1.231(2)	C(19)-C(18)-C(17)	121.48(17)
N(6)-O(1)	1.241(2)	C(18)-C(19)-C(20)	119.89(17)
N(6)-O(3)	1.2775(19)	C(2)-N(1)-C(3)	109.47(12)
N(2)-C(6)	1.492(2)	C(2)-N(1)-C(1)	111.20(13)
N(2)-C(4)	1.506(2)	C(3)-N(1)-C(1)	111.39(13)
N(2)-C(8)	1.519(2)	O(4)-N(7)-O(6)	120.89(14)
N(3)-C(7)	1.499(2)	O(4)-N(7)-O(5)	120.40(15)
N(3)-C(5)	1.506(2)	O(6)-N(7)-O(5)	118.70(15)
N(3)-C(15)	1.522(2)	O(2)-N(6)-O(1)	122.05(16)
N(4)-C(13)	1.373(2)	O(2)-N(6)-O(3)	119.12(15)
N(5)-C(20)	1.380(2)	O(1)-N(6)-O(3)	118.83(15)
C(3)-C(5)	1.519(2)	C(6)-N(2)-C(4)	111.07(14)
C(2)-C(4)	1.522(2)	C(6)-N(2)-C(8)	110.22(13)
C(8)-C(9)	1.510(2)	C(4)-N(2)-C(8)	111.78(13)
C(9)-C(14)	1.390(2)	C(7)-N(3)-C(5)	111.15(13)
C(9)-C(10)	1.394(3)	C(7)-N(3)-C(15)	108.74(13)
C(14)-C(13)	1.404(2)	C(5)-N(3)-C(15)	113.25(13)
C(13)-C(12)	1.405(3)	N(1)-C(3)-C(5)	111.97(13)
C(12)-C(11)	1.386(3)	N(1)-C(2)-C(4)	112.10(13)
C(10)-C(11)	1.390(3)	C(9)-C(8)-N(2)	111.64(13)
C(16)-C(21)	1.387(2)	N(2)-C(4)-C(2)	111.78(13)
C(16)-C(17)	1.397(2)	N(3)-C(5)-C(3)	111.47(13)
C(16)-C(15)	1.502(2)	C(14)-C(9)-C(10)	120.32(16)
C(21)-C(20)	1.396(2)	C(14)-C(9)-C(8)	119.91(16)
C(20)-C(19)	1.405(2)	C(10)-C(9)-C(8)	119.76(16)
C(17)-C(18)	1.392(3)	C(9)-C(14)-C(13)	120.92(17)
C(18)-C(19)	1.386(3)	N(4)-C(13)-C(12)	121.37(16)

Symmetry transformations used to generate equivalent atoms:

Fig. S1. Single crystal X-ray structure of 1 with weak hydrogen bonding between the nitrate anion and protonated amine

Fig. S2. FT-IR spectra of catalysts 1-3. Top (1), middle (2) and bottom (3)

Fig. S3. ^{13}C NMR spectra of MDEA, MDEA with CO_2, and MDEA with 1 and CO_2 in D_2O

Fig S4: ¹H NMR spectrum of A

Fig. S5: ¹H NMR spectrum of B

Fig. S6. ¹H NMR spectrum of C

Fig. S7. ¹H NMR spectrum of **2**, (diethyl ether(δ 1.11 & 3.41) and ethyl alcohol (δ 1.11 & 3.41) in DMSO-d6)

Fig. S8. ¹H NMR spectrum of D

Fig. S9. ¹H NMR spectrum of E

Fig. S10. ¹H NMR spectrum of F

Fig. S11. ¹H NMR spectrum of 1

Fig. S12. ¹H NMR spectrum of G

Fig. S13. ¹H NMR spectrum of H

Fig. S14. ¹H NMR spectrum of I

Fig. S15. ¹H NMR spectrum of **3** (diethyl ether(δ 1.11 & 3.41) in DMSO-d6)

