DFT Studies of Small Ni Cluster on Graphene Surface: Effect of CO2 Activation

He Xu^{a,b,}, Wei Chu^{a,b}, WenjingSun^c, ChengfaJiang^{a,b,*}, ZhongqingLiu^{a,*}

^aSchool of Chemical EngineeringSichuan University, Chengdu 610065, China

^bSichuan Provincial Environmental Protection Center for Catalytic Materials

Engineering Technology, Chengdu 610064, China

^cChina-America Cancer Research Institute, Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical University, Dongguan, Guangdong 523808, China;

*Corresponding author

Email address: jiangcf@scu.edu.cn (Prof. Chengfa Jiang)

liuzq_hgxy@scu.edu.cn(Prof. Zhongqing Liu).

The project was supported by National Basic Research Program of China (973 Program) (2011CB201202) & the National Natural Science Foundation of China (No. 21376154).

Figure and table Captions:

Figure S1. The optimized structures of (a) perfect-graphene sheet, (b) one Ni atom deposited on graphene with an elevation (h) of 1.498 Å.

Figure S2. PDOS of Ni atom and C atom in a) three, b) five, c) seven and d) ten Ni atoms adsorbed on MGr. The PDOS is projected on the orbitals of C (red) and Ni (black) atoms.

Figure S3. Stable configurations of CO₂ adsorbed on Ni₄, Ni₅, Ni₆ and Ni₁₀.

Figure S4. Stable configurations of CO₂ adsorbed on MGr surface deposition of Ni₄, Ni₅, Ni₆ and Ni₁₀.

Figure S5. Sum of density of states projected on the atoms of the CO_2 molecule adsorbed on isolated Ni₄ (red), on MGr surface (blue) and on the Ni₄/MGr system (green). The zero energy is set to the highest occupied state of corresponding system.

Table S1 Binding energy E_B , C-O bond length d_{C-O} and O-C-O angle α_{O-C-C} of CO₂ adsorbed on an isolated Ni_x cluster, on MGr and on a graphene doped Ni_x cluster.

Figure S1. The optimized structures of (a) perfect-graphene sheet, (b) one Ni atom deposited on graphene with an elevation (h) of 1.498Å.

Figure S2. PDOS of Ni atom and C atom in a) three, b) five, c) seven and d) ten Ni atoms adsorbed on MGr. The PDOS is projected on the orbitals of C (red) and Ni (black) atoms.

Figure S3. Stable configurations of CO_2 adsorbed on Ni₄, Ni₅, Ni₆ and Ni₁₀ cluster.

Figure S4. Stable configurations of CO_2 adsorbed on MGr surface deposition of Ni_4 ,

 Ni_5 , Ni_6 and Ni_{10} cluster.

Figure S5. Sum of density of states projected on the atoms of the CO_2 molecule adsorbed on isolated Ni₄ (red), on MGr surface (blue) and on the Ni₄/MGr system (green). The zero energy is set to the highest occupied state of corresponding system.

Substrate	$E_B, \mathrm{CO}_2 \ (\mathrm{eV})$	<i>d_{C-O(1)}</i> (Å)	<i>d_{C-0(2)}</i> (Å)	a _{0-C-0} (°)
CO ₂	-	1.175	1.175	180.00
MGr	-1.35	1.376	1.377	107.86
Ni ₄ cluster	-1.80	1.263	1.262	136.26
Ni ₄ /MGr	-2.72	1.250	1.243	140.31
Ni ₅ cluster	-1.55	1.250	1.260	138.00
Ni ₅ /MGr	-2.05	1.252	1.252	138.90
Ni ₆ cluster	-1.43	1.263	1.248	138.23
Ni ₆ /MGr	-1.76	1.254	1.250	139.96
Ni ₁₀ cluster	-1.42	1.220	1.298	132.39
Ni ₁₀ /MGr	-4.03	1.239	1.265	138.29

Table S1 Binding energy E_B , C-O bond length d_{C-O} and O-C-O angle α_{O-C-C} of CO₂

adsorbed on an isolated Ni_x cluster, on MGr and on a graphene doped Ni_x cluster.

It can be seen that, CO_2 molecule has the greatest transformation on MGr surface compared with the other adsorbing materials, which indicates that activation of CO_2 on MGr is the most obvious. For Ni₅ and Ni₆, the activation degree of CO_2 is similar, however, the E_B of CO_2 on Ni_x/MGr is lower than Ni_x, which can be expressed by two aspects: on one hand, Ni cluster, as a medium, can transfer electrons form CO_2 to MGr well, so the ability of combine with CO_2 and Ni_x/MGr enhanced significantly. And the other hand is that, CO_2 molecule may change the electrons distribution of Ni_x/MGr, and leads to the system tend to be more stable when adsorbed on it.