Electronic supplementary information (ESI)

Antiviral Mechanism Study of Gossypol and Its Schiff's Bases Derivatives Based on Reactive Oxygen Species (ROS)

Bin Zhang, Ling Li, Yuxiu Liu, and Qingmin Wang*

State Key Laboratory of Elemento-Organic Chemistry, Research Institute

of Elemento-Organic Chemistry, Collaborative Innovation Center of

Chemical Science and Engineering (Tianjin), Nankai University, Tianjin

300071, People's Republic of China

Contents:

1. /	Analyze of the H ₂ O ₂ and O ₂	2-3
------	---	-----

2.	The	water-solubi	lity of	f compound	3-12,	26	(at	25	°C)	and	their
an	nti-TN	MV activity									4

3. Data for key compounds(3-25) ------4-13

4. Spectrums of key compounds (3-25) ------14-39

1. Analyze of the H_2O_2 and O_2 .

The most important thing for H_2O_2 or O_2 -determination was to find the suited standard curve of each compound.

Figure 1. The mechanism of O_2 ⁻ detection.

The mechanism for the measurement of O_2^{-1} is shown above. The concentration of O_2^{-1} can be converted to NaNO₂ by the equation (1).

(1)
$$c(O_2^{-}) = c(NaNO_2) \times 2$$

The corresponding NaNO₂ values can be obtained by plotting against a standard curve of NaNO₂. As we can see in below, the equation (2) reflect the standard curve of NaNO₂ solution.

(2)
$$A_{530} = c(NaNO_2) \times D + E$$

In this equation, A_{530} stand for the 530 nm absorbance data, and $c(NaNO_2)$ stand for the concentration of NaNO₂. The constant **E** was the absorbance of blank sample $(c(NaNO_2) = 0)$, which is a background of this method, and **D** was related to its the sensitivity.

In theory, different gossypol schiff's bases may have different A_{530} at the same time, and the same gossypol schiff's base could have different A_{530} at different time. To make the equation more reasonable, we add a constant **F**, which represents the A_{530} of gossypol schiff's bases, to the equation (2). On the base of this, the equation (2) could be transfer to (3). For example, the equation suited for compound 11 (t = 1hr, 25 °C) could be obtain by adding a constant C (A_{530} = 0.029) to the standard curve of NaNO₂.

(3)
$$A_{530} = c(NaNO_2) \times D + E + F$$

Because the O_2 can exit in water in a very short time, the results were the sum of O_2 in certain period. The equation of the O_2 production rate could be describe as equation (5).

(4)
$$c(O_2^{-}) = \frac{(A_{530} - E - F) \times 2}{D}$$

(5) $rate(O_2^{-}) = \frac{(A_{530} - E - F) \times 2}{D \times T}$ (T < 20 min)

The H_2O_2 concentration were measured by the equation (6).

(6)
$$c(H_2O_2) = \frac{A_{560} - B - C}{A}$$

Figure 3. The water-solubility of compound 3-12, 26 (at 25 °C) and their anti-TMV activity.

2. Data for key compounds (¹H NMR, ¹³C NMR and HRMS)

Data for **3**, yellow solid; yield, 53%; ¹H NMR (400 MHz, DMSO-d₆), δ 13.64 (s, 2H), 9.67 (s, 2H), 8.60(s, 2H), 7.35–7.22 (m, 12H), 4.86 (s, 2H), 3.66(s, 2H), 1.83 (s, 6H), 1.42 (s,12H); ¹³C NMR (100 MHz, DMSO-d₆), δ 171.8, 170.4, 162.3, 160.5, 146.6, 142.0,135.5, 131.3, 129.2, 128.8, 128.6, 128.4, 127.4, 127.3, 126.5, 116.9, 104.3, 68.7, 64.4, 27.0, 20.9. HRMS(ESI) m/z calcd for C₄₆H₄₃N₂O₁₀ (M–2Na+H)⁻ 783.29, found 783.29.

Data for **4**, yellow solid, moisture absorption easily; yield, 72%; ¹H NMR (400 MHz, DMSO-d₆), δ 13.19 (m, 2H), 9.62 (d,J=12.3Hz, 1H), 9.50 (d, J=12.3Hz, 1H), 8.45 (s, 2H), 7.38–7.09 (m, 14H), 3.96 (s, 2H), 3.68 (m, 2H), 3.09–2.85 (m, 4H), 1.92-1.89 (d, J=13.6H, 6H), 1.43 (t, J=5.6Hz, 12H); ¹³C NMR (100 MHz, DMSO-d₆), δ 171.5, 170.9, 160.5, 149.9, 146.4, 138.1, 130.7, 129.4, 128.1, 126.5, 126.0, 125.5, 120.5, 116.3, 116.1, 103.0, 65.9, 36.9, 26.4, 20.3. HRMS(ESI) m/z calcd for C₄₈H₄₇N₂O₁₀ (M–2Na+H)⁻ 811.32, found 811.32.

Data for **5**, yellow solid, moisture absorption easily; yield, 43%; ¹H NMR (400 MHz, DMSO-d₆), δ 13.28-13.19 (m, 2H), 10.91 (s, 1H), 10.75 (s, 1H), 9.63 (s, 1H), 9.44 (s, 1H), 8.47 (s, 2H), 7.53–6.84 (m, 12H), 4.04 (s, 2H), 3.66 (m, 2H), 3.15-3.06 (m, 4H), 1.88 (d, J=8Hz, 6H), 1.42 (s, 12H); ¹³C NMR (100 MHz, DMSO-d₆), δ 172.3, 171.1, 161.1, 146.9, 136.6, 131.0, 127.8, 127.0, 125.7, 124.4, 124.2, 121.0, 118.8, 118.6, 116.6, 111.6, 110.7, 103.27, 65.3, 55.1, 31.2, 26.9, 20.9. HRMS(ESI) m/z calcd for C₅₂H₄₉N₄O₁₀ (M–2Na+H)⁻ 889.34, found 889.34.

Data for **6**, yellow solid, moisture absorption easily; yield, 39%; ¹H NMR (400 MHz, DMSO-d₆), δ 13.16 (s, 2H), 9.69-9.65 (m, 2H), 8.51 (s, 2H), 7.40-7.39 (m, 2H), 3.89-3.88 (m, 2H), 3.68-3.62 (m, 4H), 1.92 (s, 6H), 1.43–1.41 (m, 12H), 1.05–1.02 (m, 6H); ¹³C NMR (100 MHz, DMSO-d₆), δ 172.0, 171.3, 161.7, 151.8, 146.7, 131.2, 126.8, 126.2, 122.7, 117.1, 115.9, 103.9, 70.1, 67.7, 55.5, 27.0, 22.7, 20.9, 20.2. HRMS(ESI) m/z calcd for C₃₈H₄₃N₂O₁₂ (M–2Na+H)⁻ 719.28, found 719.28.

Data for 7, yellow solid, moisture absorption easily; yield, 67%; ¹H NMR (400 MHz, DMSO-d₆), δ 13.25 (s, 2H), 9.75 (dd, J = 21.3, 12.8 Hz, 2H), 8.52 (s, 2H), 7.39 (d, J = 6.1 Hz, 2H), 3.81 – 3.51 (m, 10H), 1.91 (d, J =10.8Hz, 6H), 1.43-1.42 (m, 12H); ¹³C NMR (100 MHz, DMSO-d₆), δ 170.8, 169.8, 161.0, 149.9, 146.4, 130.6, 126.5, 125.4,

120.2, 116.5, 116.1, 103.2, 66.4, 63.8, 60.7, 26.4, 20.4, 20.2. HRMS(ESI) m/z calcd for $C_{36}H_{39}N_2O_{12}$ (M-2Na+H)⁻ 691.24, found 691.24.

Data for **8**, yellow solid; yield, 86%; ¹H NMR (400 MHz, DMSO-d₆), δ 13.25 (s, 2H), 9.74 (s, 2H), 8.47 (s, 2H), 7.37 (d, *J* = 12.0 Hz, 2H), 4.18-4.09 (m, 2H), 3.80–3.78 (m, 4H), 3.00-2.90 (m, 2H), 1.88 (t, *J* = 8.0 Hz, 6H), 1.42-1.38 (m, 12H), 0.83 (s, 2H).

Data for **9**, yellow solid; yield, 86%; ¹H NMR (400 MHz, DMSO-d₆), δ 13.20 (s, 2H), 9.68 (d, *J* = 12.5 Hz, 2H), 8.52 (s, 2H), 7.39 (s, 2H), 3.68 (m, 2H), 3.51 (s, 2H), 2.21 (m, 2H), 1.92 (s, 6H), 1.43 (t, *J* = 6.6 Hz, 12H), 0.88-0.84 (m,12H); ¹³C NMR (100 MHz, DMSO-d₆), δ 172.4, 171.4, 161.3, 150.7, 146.9, 131.1, 126.9, 126.1, 121.3, 117.0, 116.6, 103.5, 71.2, 32.1, 27.0, 20.9, 20.1, 17.7. HRMS(ESI) m/z calcd for C₄₀H₄₇N₂O₁₀ (M–2Na+H)⁺715.32, found 715.32.

Data for **10**, yellow solid, moisture absorption easily; yield, 82%; ¹H NMR (400 MHz, DMSO-d₆), δ 13.27 (s, 2H), 9.77 (s, 2H), 8.51 (s, 2H), 7.39 (s, 2H), 3.77 (s, 2H), 3.69 (s, 2H), 1.92 (s, 6H), 1.65-1.57 (m, 6H), 1.43 (s, 12H), 0.86 (s, 12H); ¹³C NMR (100

MHz, DMSO-d6), δ 172.9, 171.3, 160.9, 151.0, 146.9, 131.3, 127.0, 126.1, 121.9, 117.3, 116.6, 103.6, 64.0, 43.8, 26.9, 24.6, 23.6, 22.13, 20.8. HRMS(ESI) m/z calcd for C₄₂H₅₁N₂O₁₀ (M-2Na+H)⁺ 743.35, found 743.35.

Data for **11**, yellow solid,moisture absorption easily; yield, 43%; ¹H NMR (400 MHz, DMSO-d₆), δ 13.22 (s, 2H), 9.71 (s, 2H), 8.47 (s, 2H), 7.56 (s, 2H), 7.37 (s, 2H), 6.86 (d, *J* = 32.5 Hz, 2H), 4.05 (m, 2H), 3.69 – 3.66 (m, 2H), 2.75-2.71 (m, 2H), 2.44-2.38 (m, 2H), 1.92 (d, *J* = 12 Hz 6H), 1.43 (t, *J* = 6.0 Hz, 12H). ¹³C NMR (100 MHz, DMSO-d₆), δ 172.0, 171.8, 170.7, 161.1, 151.2, 146.5, 130.6, 126.4, 125.5, 120.7, 116.4, 115.8, 103.0, 61.3 54.8, 26.4, 21.8, 20.3, 20.2. HRMS(ESI) m/z calcd for C₃₈H₄₃N₄O₁₂ (M–2Na+3H)⁺747.28, found 747.28.

Data for **12**, yellow solid, moisture absorption easily; yield, 42%; ¹H NMR (400 MHz, DMSO-d₆), δ 13.22 (s, 2H), 9.74 (s, 2H), 8.48 (s, 2H), 7.38 (d, *J* = 10.4 Hz, 4H), 6.89 (s, 2H), 3.78–3.68 (m, 4H), 2.09–1.92 (m, 14H), 1.45–1.42 (m, 6H); ¹³C NMR (100 MHz, DMSO-d₆), δ 174.3, 172.3, 171.4, 160.5, 151.0, 146.9, 131.2, 127.0, 126.1, 121.0 116.9, 109.9, 103.6, 64.5, 64.3, 56.49, 31.8, 30.8, 27.0, 20.9, 20.7. HRMS(ESI) m/z calcd for C₄₀H₄₅N₄O₁₂ (M–2Na+3H)⁺ 775.31, found 775.31.

Data for **13**, yellow solid; yield, 71%; ¹H NMR (400 MHz, DMSO-d₆), δ 13.50-13.44 (m, 2H), 10.93 (d, *J* = 1.8 Hz, 2H), 9.76 (d, *J* = 12.5 Hz, 1H), 9.65 (d, *J* = 12.5 Hz, 1H), 8.45 (s, 2H), 7.84 (s, 1H), 7.61 (s, 1H), 7.47 – 6.92 (m, 12H), 4.78 (s, 6.3 Hz, 2H), 3.67 (s, 8H), 3.43 (s, 4H), 1.92 (s, 6H), 1.42 (d, *J* = 6.7 Hz, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 173.4, 170.5, 161.7, 148.8, 147.1, 136.3, 131.8, 129.1, 127.7, 126.8, 124.2, 122.2, 119.8, 118.3, 115.7, 114.5, 111.2, 108.9, 103.5, 62.8, 62.33, 53.0, 30.4, 27.4, 20.3, 19.9.

Data for **14**, yellow solid; yield, 71%; ¹H NMR (400 MHz, DMSO-d₆), δ 13.26–13.23 (m, 2H), 10.89 (s, 2H), 9.81 (d, J = 12.4 Hz, 2H), 8.40 (s, 2H), 7.78 (brs, 2H), 7.59(d, 2H), 7.44 (s, 2H), 7.33 (d, J = 7.9 Hz, 2H), 7.21 (s, 2H), 7.05 (t, J = 7.4 Hz, 2H), 6.96 (t, J = 7.4Hz, 2H), 3.84–3.69 (m, 6H), 3.09 (t, J = 6.4 Hz, 4H), 1.94 (s, 6H), 1.45 (t, J = 5.7 Hz, 12H). ¹³C NMR (100 MHz, DMSO-d₆), δ 172.2, 162.8, 150.5, 146.7, 136.8, 131.6, 127.4, 126.8, 123.7, 121.5, 120.8, 118.8, 116.8, 116.4, 111.9, 110.8, 103.7, 51.0, 27.0, 26.8, 20.9, 20.7. HRMS(ESI) m/z calcd for C₅₀H₄₉N₄O₆ (M–H)⁺ 801.37, found 801.36.

Data for **15**, yellow solid; yield, 76%; ¹H NMR (400 MHz, DMSO-d₆), δ 13.48–13.43 (m, 2H), 9.73 (d, *J* = 12.8 Hz, 2H), 8.42 (s, 2H), 7.72 (s, 2H), 7.54–7.12 (m, 12H), 5.20 (s, 2H), 3.70-3.51 (m, 8H), 3.02-2.88 (m, 4H), 1.91 (s, 6H), 1.39 (m, 12H); ¹³C NMR (101 MHz, DMSO-d₆), δ 172.2, 162.5, 150.01, 146.7, 138.1 , 131.6, 129.7, 128.9, 127.3, 126.9, 120.4, 117.0, 116.2, 103.7, 64.4, 63.7, 37.7, 27.0, 20.8, 20.7. HRMS(ESI) m/z calcd for C₄₈H₅₁N₂O₈ (M–H)⁺783.37, found 783.36.

Data for **16**, yellow solid, moisture absorption easily; yield, 70%; ¹H NMR (400 MHz,DMSO-d₆), δ 13.16 (m, 2H), 9.62 (d, J=12.3Hz, 1H), 9.58 (d, J=12.3Hz, 1H), 8.46 (s, 2H), 7.38–7.09 (m, 14H), 3.96 (s, 2H), 3.68 (m, 2H), 3.09–2.85 (m, 4H), 1.90-1.87 (d, J = 13.6H, 6H), 1.42 (t, J = 5.6Hz, 12H).

Data for 17, yellow solid, moisture absorption easily; yield, 41%; ¹H NMR (400 MHz, DMSO-d₆), δ 13.12 (s, 2H), 9.73-9.66 (m, 2H), 8.51 (s, 2H), 7.40-7.38 (m, 2H), 3.89-3.88 (m, 2H), 3.68-3.62 (m, 4H), 1.92 (s, 6H), 1.43–1.41 (m, 12H), 1.04–1.00 (m, 6H).

Data for **18**, yellow solid, moisture absorption easily; yield, 71%; ¹H NMR (400 MHz, DMSO-d₆), δ 13.25 (s, 2H), 9.70 (m, 2H), 8.50 (s, 2H), 7.39 (d, *J* = 6.1 Hz, 2H), 3.76–3.50 (m, 10H), 1.92 (d, *J* = 10.8Hz, 6H), 1.45–1.42 (m, 12H).

Data for **19**, yellow solid, moisture absorption easily; yield, 46%; ¹H NMR (400 MHz, DMSO-d₆), δ 13.22 (s, 2H), 9.71 (s, 2H), 8.48 (s, 2H), 7.56 (s, 2H), 7.37 (s, 2H), 6.86 (d, *J* = 32.5 Hz, 2H), 4.05 (m, 2H), 3.71–3.64 (m, 2H), 2.74-2.71 (m, 2H), 2.44-2.38(m, 2H), 1.92 (d, *J* = 12 Hz 6H), 1.43 (t, *J* = 6.0 Hz, 12H).

Data for **20**, yellow solid, moisture absorption easily; yield 47%; ¹H NMR (400 MHz, DMSO-d₆), δ 13.28-13.19 (m, 2H), 10.91 (s, 1H), 10.75 (s, 1H), 9.63 (s, 1H), 9.42 (s, 1H), 8.47 (s, 2H), 7.53–6.82 (m, 12H), 4.04 (s, 2H), 3.69-3.63 (m, 2H), 3.39 (m, 2H), 3.16-3.06 (m, 4H), 1.87 (d, J = 8Hz, 6H), 1.42 (s, 12H).

Data for **21**, yellow solid; yield, 71%; ¹H NMR (400 MHz, DMSO-d6), δ 13.49-13.44 (s, 2H), 10.93 (s, 2H), 9.76 (d, *J* = 12.5 Hz, 1H), 9.66 (d, *J* = 12.5 Hz, 1H), 8.44 (s, 2H), 7.84 (s, 1H), 7.61 (s, 1H), 7.47–6.91 (m, 12H), 4.81-4.76 (m, 2H), 3.67 (d, J = 4.8 Hz, 8H), 3.43 (s, 4H), 1.92 (d, J = 4.8 Hz, 6H), 1.43 (d, *J* = 6.7 Hz, 12H).

Data for **22**, yellow solid,moisture absorption easily; yield, 75%; ¹H NMR (300 MHz, DMSO-d₆), δ 13.47 (dd, J = 4.8, 12.5 Hz, 2H), 10.92 (s, 2H), 9.76 (d, J = 12.6 Hz, 2H), 8.44 (s, 2H), 7.81 (s, 2H), 7.48–6.91 (m, 12H), 4.82–4.76 (m, 2H), 3.66 (s, 8H), 3.46–3.35 (m, 4H), 1.93 (s, 6H), 1.43 (d, J = 6.4 Hz, 12H). ¹³C NMR (100 MHz, DMSO-d₆), δ 238.34, 173.12, 171.35, 170.3, 161.8, 150.2, 146.7, 136.6, 132.0, 127.6, 127.4, 124.7, 121.5, 121.0, 119.0, 118.5, 117.1, 116.2, 112.0, 108.2, 104.4, 62.5, 53.0, 29.4, 27.0, 20.8, 20.7.

Data for **23**, yellow solid, moisture absorption easily; yield, 84%; ¹H NMR (300 MHz, DMSO- d_6), δ 13.48 (dd, J = 4.8, 12.5 Hz, 2H), 10.92 (s, 2H), 9.64 (d, J = 12.6 Hz, 2H), 8.44 (s, 2H), 7.61 (s, 2H), 7.48–6.89 (m, 12H), 4.82–4.76 (m, 2H), 3.67 (s, 8H),

3.43–3.35 (m, 4H), 1.92 (s, 6H), 1.42 (d, J = 6.4 Hz, 12H); ¹³C NMR (100 MHz, DMSO- d_6), δ 238.3, 173.1, 171.4, 170.3, 169.0, 161.8, 150.2, 146.7, 136.6, 132.0, 127.6, 127.4, 124.7, 121.5, 121.0, 119.0, 118.5, 117.1, 116.2, 111.0, 108.2, 104.4, 62.5, 53.0, 29.4, 27.0, 20.8, 20.7.

Data for **24**, yellow solid, moisture absorption easily; yield, 84%; ¹H NMR (300 MHz, DMSO-*d*₆), δ 13.51–13.45 (m, 2H), 10.92 (s, 2H), 9.77 (d, J = 12.6 Hz, 2H), 8.44 (s, 2H), 7.81 (s, 2H), 7.48–6.93 (m, 12H), 4.82–4.76 (m, 2H), 3.66 (s, 8H), 3.46–3.35 (m, 4H), 1.93 (s, 6H), 1.43 (d, J = 6.4 Hz, 12H).

Data for **25**, yellow solid, moisture absorption easily; yield, 84%; ¹H NMR (400 MHz, DMSO-d₆), δ 13.48–13.43 (m, 2H), 10.92 (s, 2H), 9.64 (d, J = 12.6 Hz, 2H), 8.43 (s, 2H), 7.61 (s, 2H), 7.48–6.89 (m, 12H), 4.82–4.76 (m, 2H), 3.67 (s, 8H), 3.43–3.35 (m, 4H), 1.92 (s, 6H), 1.42 (d, J = 6.4 Hz, 12H).

Data for **26**, yellow solid, moisture absorption easily; yield, 88%; ¹H NMR (400 MHz, DMSO-d₆), δ 13.25-13.18 (s, 2H), 9.75 (t, J = 12.8 Hz, 2H), 8.50 (s, 2H), 7.39 (s, 2H), 3.88–3.79 (m, 2H), 3.72-3.65 (m, 2H), 2.08–1.81 (m, 20H), 1.45-1.38 (m, 12H).

3. Spectrums of key compounds (¹H NMR, ¹³C NMR and HRMS)

¹H NMR spectrum of compound 3.

¹³C NMR spectrum of compound 3.

HRMS of compound 3.

¹H NMR spectrum of compound 4.

¹³C NMR spectrum of compound 4.

HRMS of compound 4.

¹H NMR spectrum of compound 5.

¹H NMR spectrum of compound 5.

HRMS of compound 5.

¹H NMR spectrum of compound 6.

¹³C NMR spectrum of compound 6.

HRMS of compound 6.

¹H NMR spectrum of compound 7.

¹³C NMR spectrum of compound 7.

HRMS of compound 7.

¹H NMR spectrum of compound 8.

HRMS of compound 8.

¹H NMR spectrum of compound 9.

¹³C NMR spectrum of compound 9.

HRMS of compound 9.

¹H NMR spectrum of compound 10.

¹³C NMR spectrum of compound 10.

HRMS of compound 10.

¹H NMR spectrum of compound 11.

¹³C NMR spectrum of compound 11.

HRMS of compound 11.

¹H NMR spectrum of compound 12.

¹³C NMR spectrum of compound 12.

HRMS of compound 12.

¹H NMR spectrum of compound 13.

¹H NMR spectrum of compound 14.

¹³C NMR spectrum of compound 14.

HRMS of compound 14.

¹H NMR spectrum of compound 15.

¹³C NMR spectrum of compound 15.

HRMS of compound 15.

¹H NMR spectrum of compound 16.

¹H NMR spectrum of compound 17.

¹H NMR spectrum of compound 18.

¹H NMR spectrum of compound 19.

¹H NMR spectrum of compound 20.

¹H NMR spectrum of compound 21.

¹H NMR spectrum of compound 22.

¹³C NMR spectrum of compound 22.

¹³C NMR spectrum of compound 23.

¹H NMR spectrum of compound 24.

¹H NMR spectrum of compound 25.

¹H NMR spectrum of compound 26.

