Supporting Information

Ag-Catalyzed Diastereoselective [6+3] Cycloaddition of Tropone with

Homoserine Lactone-Derived Azomethine Ylides: Synthesis of

Tricyclic Spiropiperidines

Yang Wu, Honglei Liu, Lei Zhang, Zhanhu Sun, Yumei Xiao, Jiaxing Huang,* Min Wang* and Hongchao Guo*

Contents

General Information	S2
Preparation of α -Iminoesters 2	S2
General Procedure for [6+3] Cycloaddition	S2
Characterization Data for the [6+3] Cycloaddition Products 3	S3-S8
¹ H and ¹³ C NMR Spectra of the Products 3	S9-S19
X-Ray Crystallographic Data of 3a	S20-S26

General Information

All reactions were performed under N₂ atmospheres in oven-dried glassware with magnetic stirring. Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. Diethyl ether employed in the reactions was freshly distilled from CaCI₂. Organic solutions were concentrated under reduced pressure on a rotary evaporator or an oil pump. Reactions were monitored through thin layer chromatography (TLC) on silica gel–precoated glass plates. Flash column chromatography was performed using Qingdao Haiyang flash silica gel (200–300 mesh). Infrared spectra were recorded using a Bruker Optics TENSOR 27 instrument. ¹H and ¹³C NMR spectra were recorded in CDCl₃ using a 300 MHz NMR instrument (referenced internally to Me₄Si). Chemical shifts (δ , ppm) are relative to tetramethylsilane (TMS) with the resonance of the non-deuterated solvent or TMS as the internal standard. ¹H NMR data are reported as follows: chemical shift, multiplicity (s = singlet; d = doublet; q = quartet; m = multiplet; br = broad), coupling constant (Hz), and integral. Data for ¹³C NMR spectra are reported in terms of chemical shift. Optical rotation was obtained on an Autopol V Plus polarimeter. Accurate mass measurements were performed using an Agilent instrument with the ESI-MS technique.

Preparation of α-Iminoesters 2

All α -iminoesters were prepared using the reported procedure. A suspension of α -amino- γ butyrolactone hydrobromide (14.8 mmol), MgSO₄ (14.8 mmol) and Et₃N (14.8 mmol) in dry CH₂Cl₂ (36 mL) was stirred at room temperature for 1 h, and aldehyde (16.2 mmol) was added. The resulting mixture was stirred at room temperature for 12 h, and then was filtered. To the filtrate was added water (5 mL). The organic layer was separated and the aqueous phase was extracted with CH₂Cl₂ (10 mL). The combined organic layers were washed with brine, dried over MgSO₄ and evaporated under reduced pressure to afford α -iminoesters **2**, which was used in the next step without further purification.

General Procedure for [6+3] cycloaddition between Tropone and Azomethine Ylides by AgOAc/PPh₃

Under nitrogen atmosphere, Ag catalyst (10 mol%, 0.03 mmol, 5.0 mg) and Ph₃P (20 mol%, 0.06 mmol, 15.8 mg) were dissolved in 1 mL of methanol. The resulting mixture was stirred at room temperature for about 1 hour, followed by addition of tropone 1 (0.3 mmol, 30 μ L), α -iminoesters 2 (0.45mmol), DBU (20 mol%, 9.1 mg, 0.06 mmol) and methanol (2 mL). Upon the completion of the reaction as monitored by TLC, the mixture was concentrated in vacuo. The residue was purified through flash column chromatography (EtOAc/petroleum ether) to afford the corresponding product.

Characterization Data for the Cycloaddition Products 3

9-Phenyl-4',5'-dihydro-2'H-8-azaspiro[bicyclo[4.3.1]deca[2,4]diene-7,3'-furan]-2',10-dione (3a)

Prepared according to the general procedure as described above in 92% yield. Reaction time = 12 h. It was purified by flash chromatography (EtOAc/PE = 1/10) to afford white solid, m.p. 102 – 103 °C. ¹H NMR analysis: >20:1 dr. ¹H NMR (300 MHz, CDCl₃) δ 7.39 – 7.18 (m, 5H), 6.16 (dd, *J* = 11.4, 7.7 Hz, 1H), 6.06 – 5.87 (m, 1H), 5.59 (dd, *J* = 11.1, 8.2 Hz, 1H), 5.09 (dd, *J* = 11.3, 7.7 Hz, 1H), 4.83 (dd, *J* = 11.1, 3.8 Hz, 1H), 4.54 (ddd, *J* = 10.8, 8.8, 5.6 Hz, 1H), 4.39 (m, 1H), 3.73 (ddd, *J* = 7.7, 4.0, 2.4 Hz, 1H), 3.37 (dd, *J* = 8.2, 2.4 Hz, 1H), 2.43 (ddd, *J* = 13.3, 10.8, 8.5 Hz, 1H), 2.10 (ddd, *J* = 13.3, 5.6, 1.1 Hz, 1H), 1.97 (d, *J* = 11.2 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 203.1, 175.3, 138.0, 128.5, 128.0, 127.5, 126.2, 125.9, 124.1, 121.0, 67.2, 66.14, 60.4, 58.4, 56.0, 35.7; IR (film) v_{max} 3323, 3030, 2980, 2929, 1750, 1603, 1480, 1379, 1264, 1193, 1062, 1031, 957, 873, 827, 802, 751, 661, 614, 512, 468; HRMS (ESI) calcd for C₁₈H₁₇NO₃ [M + Na]⁺ 318.1101, found 318.1100.

9-(o-Tolyl)-4',5'-dihydro-2'H-8-azaspiro[bicyclo[4.3.1]deca[2,4]diene-7,3'-furan]-2',10-dione (3b)

Prepared according to the general procedure as described above in 56% yield. Reaction time = 12 h. It was purified by flash chromatography (EtOAc/PE = 1/10) to afford white solid, m.p. 114 – 115 °C. ¹H NMR analysis: >20:1 dr. ¹H NMR (300 MHz, CDCl₃) δ 7.24 – 7.16 (m, 3H), 7.05 – 6.98 (m, 1H), 6.21 (dd, *J* = 11.3, 7.6 Hz, 1H), 6.08 (dd, *J* = 11.4, 7.7 Hz, 1H), 5.63 (dd, *J* = 11.3, 8.2 Hz, 1H), 5.05 (dd, *J* = 11.5, 7.8 Hz, 2H), 4.51 (m, 1H), 4.43 – 4.34 (m, 1H), 3.71 – 3.54 (m, 1H), 3.39 (dd, *J* = 8.2, 2.4 Hz, 1H), 2.50 – 2.42 (m, 1H), 2.38 (s, 3H), 2.15 – 2.02 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 203.3, 175.5, 135.8, 135.0, 130.9, 128.2, 127.3, 126.0, 125.9, 125.5, 124.2, 120.9, 67.1, 66.0, 56.7, 56.2, 56.0, 35.5, 29.6; IR (film) v_{max} 3330, 3052, 2935, 1741, 1606, 1587, 1377, 1264, 1200, 1122, 1095, 1028, 876, 827, 775, 762, 696, 484; HRMS (ESI) calcd for C₁₉H₁₉NO₃ [M + Na]⁺ 332.1257, found 332.1256.

9-(m-Tolyl)-4',5'-dihydro-2'H-8-azaspiro[bicyclo[4.3.1]deca[2,4]diene-7,3'-furan]-2',10-dione (3c)

Prepared according to the general procedure as described above in 74% yield. Reaction time = 12 h. It was purified by flash chromatography (EtOAc/PE = 1/10) to afford white solid, m.p. 120 – 121 °C. ¹H NMR analysis: >20:1 dr. ¹H NMR (300 MHz, CDCl₃) δ 7.23 (t, *J* = 7.5 Hz, 1H), 7.04 (dd, *J* = 23.9, 7.9 Hz, 3H), 6.15 (m, 1H), 6.04 – 5.93 (m, 1H), 5.59 (dd, *J* = 11.4, 8.2 Hz, 1H), 5.11 (dd, *J* = 11.5, 7.7 Hz, 1H), 4.78 (dd, *J* = 11.2, 3.7 Hz, 1H), 4.61 – 4.49 (m, 1H), 4.38 (m 1H), 3.71 (ddd, *J* = 7.1, 3.9, 2.4 Hz, 1H), 3.34 (m, 1H), 2.42 (m, 1H), 2.35 (s, 3H), 2.11 (ddd, *J* = 13.3, 5.5, 1.0 Hz, 1H), 1.97 (d, *J* = 11.7 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 203.3, 175.4, 138.1, 138.0, 128.3, 128.2, 128.0, 127.0, 125.8, 124.1, 123.3, 120.9, 67.3, 66.2, 60.4, 58.4, 56.0, 35.6, 21.5; IR (film) v_{max} 3295, 3044, 2912, 1785, 1623, 1499, 1400, 1325, 1277, 1208, 1093, 1041, 890, 845, 762, 700, 464; HRMS (ESI) calcd for C₁₉H₁₉NO₃ [M + Na]⁺ 332.1257, found 332.1261.

9-(p-Tolyl)-4',5'-dihydro-2'H-8-azaspiro[bicyclo[4.3.1]deca[2,4]diene-7,3'-furan]-2',10-dione (3d)

Prepared according to the general procedure as described above in 76% yield. Reaction time = 12 h. It was purified by flash chromatography (EtOAc/PE = 1/10) to afford white solid, m.p. 104 – 105 °C. ¹H NMR analysis: >20:1 dr. ¹H NMR (300 MHz, CDCl₃) δ 7.12 (q, *J* = 8.2 Hz, 4H), 6.15 (dd, *J* = 11.4, 7.7 Hz, 1H), 6.07 – 5.92 (m, 1H), 5.58 (dd, *J* = 11.3, 8.2 Hz, 1H), 5.13 (m, 1H), 4.78 (d, *J* = 5.6 Hz, 1H), 4.63 – 4.47 (m, 1H), 4.43 – 4.31 (m, 1H), 3.69 (ddd, *J* = 12.1, 7.3, 5.3 Hz, 1H), 3.35 (dd, *J* = 8.2, 2.3 Hz, 1H), 2.49 – 2.36 (m, 1H), 2.34 (s, 3H), 2.09 (ddd, *J* = 13.3, 5.5, 1.0 Hz, 1H), 1.95 (d, *J* = 10.5 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 203.4, 175.4, 137.2, 135.0, 129.1, 128.0, 126.1, 125.8, 124.1, 120.9, 67.3, 66.2 60.3, 58.5, 56.0, 35.6, 21.0; IR (film) v_{max} 3375, 3030, 2900, 2853, 1740, 1583, 1520, 1464, 1270, 1219, 1192, 1095, 1028, , 819, 780, 715, 660, 483; HRMS (ESI) calcd for C₁₉H₁₉NO₃ [M + Na]⁺ 332.1257, found 332.1258.

9-(3-Methoxyphenyl)-4',5'-dihydro-2'H-8-azaspiro[bicyclo[4.3.1]deca[2,4]diene-7,3'-furan]-2',10dione (3e)

Prepared according to the general procedure as described above in 68% yield. Reaction time = 12 h. It was purified by flash chromatography (EtOAc/PE = 1/10) to afford yellow semi-solid. ¹H NMR analysis: >20:1 dr. ¹H NMR (300 MHz, CDCl₃) δ 7.26 (dd, J = 9.2, 6.6 Hz, 1H), 6.85 – 6.73 (m, 3H), 6.14 (dd, J = 11.4, 7.7 Hz, 1H), 5.99 (dd, J = 11.5, 7.7 Hz, 1H), 5.58 (dd, J = 11.4, 8.2 Hz, 1H), 5.12 (dd, J = 11.5, 7.7 Hz, 1H), 4.78 (dd, J = 11.5, 3.8 Hz, 1H), 4.53 (ddd, J = 10.8, 8.8, 5.6 Hz, 1H), 4.38 (m, 1H), 3.80 (s, 3H), 3.71 (ddd, J = 6.5, 3.8, 2.4 Hz, 1H), 3.35 (dd, J = 8.2, 2.3 Hz, 1H), 2.42 (ddd, J = 13.3, 10.8, 8.5 Hz, 1H), 2.13 – 2.03 (m, 1H), 1.95 (d, J = 11.7 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 203.2, 175.4, 159.7, 139.7, 129.5, 128.0, 125.9, 123.9, 120.9, 118.5, 112.5, 112.4, 67.2, 66.2, 60.3, 58.3, 56.0, 55.3, 35.6; IR (film) v_{max} 3425, 3000, 2923, 2873, 1720, 1705, 1612, 1464, 1435, 1264, 1220, 1144, 1087, 1049, 785; HRMS (ESI) calcd for C₁₉H₁₉NO4 [M + Na]⁺ 348.1206, found 348.1201.

9-(4-Methoxyphenyl)-4',5'-dihydro-2'*H*-8-azaspiro[bicyclo[4.3.1]deca[2,4]diene-7,3'-furan]-2',10dione (3f)

Prepared according to the general procedure as described above in 52% yield. Reaction time = 16 h. It was purified by flash chromatography (EtOAc/PE = 1/10) to afford yellow semi-solid. ¹H NMR analysis: >20:1 dr. ¹H NMR (300 MHz, CDCl₃) δ 7.13 (t, *J* = 5.7 Hz, 2H), 6.91 – 6.82 (m, 2H), 6.15 (dd, *J* = 11.4, 7.7 Hz, 1H), 6.00 (dd, *J* = 11.5, 7.7 Hz, 1H), 5.58 (dd, *J* = 11.4, 8.2 Hz, 1H), 5.17 – 5.08 (m, 1H), 4.80 – 4.71 (m, 1H), 4.53 (ddd, *J* = 10.8, 8.8, 5.6 Hz, 1H), 4.37 (m, 1H), 3.80 (s, 3H), 3.70 – 3.64 (m, 1H), 3.35 (dd, *J* = 8.2, 2.4 Hz, 1H), 2.43 (ddd, J = 13.3, 10.8, 8.5 Hz, 1H), 2.08 (dd, *J* = 13.4, 4.6 Hz, 1H), 1.91 (d, *J* = 11.9 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 203.3, 175.4, 158.9, 130.1, 128.0, 127.4, 125.8, 124.2, 120.9, 113.8, 67.2, 66.1, 60.0, 58.5, 56.0 55.3, 35.6; IR (film) v_{max} 3295, 2957, 2942, 2850, 1740, 1720, 1601, 1475, 1442, 1300, 1219, 1197, 1128, 1045, 780; HRMS (ESI) calcd for C₁₉H₁₉NO₄ [M + Na]⁺ 348.1206, found 348.1211.

9-(2-Fluorophenyl)-4',5'-dihydro-2'*H*-8-azaspiro[bicyclo[4.3.1]deca[2,4]diene-7,3'-furan]-2',10dione (3g)

Prepared according to the general procedure as described above in 51% yield. Reaction time = 16 h. It was purified by flash chromatography (EtOAc/PE = 1/10) to afford orange semi-solid. ¹H NMR analysis: >20:1 dr. ¹H NMR (300 MHz, CDCl₃) δ 7.32 – 7.22 (m, 1H), 7.17 – 7.01 (m, 3H), 6.18 (dd, *J* = 11.4, 7.7 Hz, 1H), 6.02 (dd, *J* = 11.5, 7.7 Hz, 1H), 5.60 (dd, *J* = 11.4, 8.2 Hz, 1H), 5.15 – 4.98 (m, 2H), 4.53 (ddd, *J* = 10.8, 8.8, 5.6 Hz, 1H), 4.39 (m, 1H), 3.82 – 3.74 (m, 1H), 3.38 (dd, *J* = 8.2, 2.3 Hz, 1H), 2.43 (ddd, *J* = 13.3, 10.8, 8.5 Hz, 1H), 2.22 – 2.06 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 202.7, 175.2, 160.0 (d, *J* = 245.3 Hz), 129.0(d, *J* = 9.0 Hz),128.1, 127.7 (d, *J* = 3.8Hz), 126.2, 125.2(d, *J* = 12.8Hz), 124.0, 123.9, 121.0, 115.7(d, *J* = 21.8Hz), 67.1, 66.2, 56.8, 56.8, 56.1, 35.8; IR (film) v_{max} 3325, 2927, 2867, 1780, 1500, 1457, 1400, 1219, 1196, 1110, 1028, 876, 705, 667; HRMS (ESI) calcd for C₁₈H₁₆FNO₃ [M + Na]⁺ 336.1006, found 336.1010.

9-(4-Fluorophenyl)-4',5'-dihydro-2'*H*-8-azaspiro[bicyclo[4.3.1]deca[2,4]diene-7,3'-furan]-2',10-dione (3h)

Prepared according to the general procedure as described above in 74% yield. Reaction time = 12 h. It was purified by flash chromatography (EtOAc/PE = 1/10) to afford orange semi-solid. ¹H NMR analysis: >20:1 dr. ¹H NMR (300 MHz, CDCl₃) δ 7.21 (m, 2H), 7.11 – 7.01 (m, 2H), 6.18 (dd, *J* = 11.4, 7.6 Hz, 1H), 6.03 (dd, *J* = 11.5, 7.7 Hz, 1H), 5.62 (dd, *J* = 11.4, 8.2 Hz, 1H), 5.10 (dd, *J* = 11.5, 7.7 Hz, 1H), 4.82 (d, *J* = 7.0 Hz, 1H), 4.55 (ddd, *J* = 9.8, 8.4, 5.2 Hz, 1H), 4.41 (ddd, *J* = 12.0, 6.6, 2.3 Hz, 1H), 3.75 – 3.67 (m, 1H), 3.38 (dd, *J* = 8.2, 2.3 Hz, 1H), 2.46 (ddd, *J* = 13.3, 10.7, 8.5 Hz, 1H), 2.16 – 2.05 (m, 1H), 1.93 (d, *J* = 11.3 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 202.9, 175.3, 162.0(d, *J* = 244.5Hz), 133.8 (d, *J* = 3.0Hz), 128.0, 127.9, 127.8, 126.1, 123.8, 121.1, 113.4(d, *J* = 75Hz), 67.1, 66.1, 59.8, 58.2, 55.9, 35.6; IR (film) v_{max} 3500, 2930, 1800, 1720, 1612, 1526, 1463, 1383, 1259, 1195, 1167, 1100, 1035, 850, 802, 765, 700, 660, 541, 525; HRMS (ESI) calcd for C₁₈H₁₆FNO₃ [M + Na]⁺ 336.1006, found 336.1003.

9-(4-Chlorophenyl)-4',5'-dihydro-2'*H*-8-azaspiro[bicyclo[4.3.1]deca[2,4]diene-7,3'-furan]-2',10dione (3i)

Prepared according to the general procedure as described above in 76% yield. Reaction time = 12 h. It was purified by flash chromatography (EtOAc/PE = 1/10) to afford orange semi-solid. ¹H NMR analysis: >20:1 dr. ¹H NMR (300 MHz, CDCl₃) δ 7.37 – 7.31 (m, 2H), 7.22 – 7.14 (m, 2H), 6.17 (dd, *J* = 11.4, 7.7 Hz, 1H), 6.02 (dd, *J* = 11.5, 7.7 Hz, 1H), 5.61 (dd, *J* = 11.3, 8.2 Hz, 1H), 5.14 – 5.02 (m, 1H), 4.82 (dd, *J* = 11.4, 3.9 Hz, 1H), 4.55 (ddd, *J* = 10.7, 8.9, 5.6 Hz, 1H), 4.41 (tt, *J* = 4.6, 2.3 Hz, 1H), 3.77 – 3.65 (m, 1H), 3.37 (dd, *J* = 8.2, 2.3 Hz, 1H), 2.45 (ddd, *J* = 13.4, 10.7, 8.5 Hz, 1H), 2.12 (ddd, *J* = 13.4, 5.6, 1.2 Hz, 1H), 1.93 (d, *J* = 11.6 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 202.8, 175.3, 136.6, 133.3, 128.6, 128.0, 127.6, 126.2, 123.6, 121.1, 67.1, 66.2, 59.8, 58.0, 55.9, 35.5; IR (film) v_{max} 3502, 2930, 1715, 1647, 1500, 1397, 1276, 1210, 1195, 1093, 851, 744, 697, 678, 483; HRMS (ESI) calcd for C₁₈H₁₆CINO₃ [M + Na]⁺ 352.0711, found 352.0705.

9-(4-Bromophenyl)-4',5'-dihydro-2'*H*-8-azaspiro[bicyclo[4.3.1]deca[2,4]diene-7,3'-furan]-2',10dione (3j)

Prepared according to the general procedure as described above in 61% yield. Reaction time = 16 h. It was purified by flash chromatography (EtOAc/PE = 1/10) to afford orange semi-solid. ¹H NMR analysis: >20:1 dr. ¹H NMR (300 MHz, CDCl₃) δ 7.55 – 7.45 (m, 2H), 7.12 (d, *J* = 8.4 Hz, 2H), 6.17 (dd, *J* = 11.4, 7.7 Hz, 1H), 6.07 – 5.95 (m, 1H), 5.61 (dd, *J* = 11.4, 8.2 Hz, 1H), 5.09 (dd, *J* = 11.5, 7.7 Hz, 1H), 4.80 (dd, *J* = 11.5, 4.0 Hz, 1H), 4.64 – 4.49 (m, 1H), 4.41 (tt, *J* = 8.9, 4.4 Hz, 1H), 3.74 – 3.66 (m, 1H), 3.38 (dd, *J* = 8.2, 2.3 Hz, 1H), 2.53 – 2.33 (m, 1H), 2.11 (ddd, *J* = 12.0, 6.0, 4.9 Hz, 1H), 1.93 (d, *J* = 11.7 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 202.7, 175.3, 137.1, 131.6, 128.0, 127.8, 126.2, 123.6, 121.4, 121.1, 67.1, 66.2, 59.9, 57.9, 55.9, 35.5; IR (film) v_{max} 3321, 2896, 2851, 1840, 1703, 1500, 1468, 1320,1274, 1198, 1088, 1029, 894, 827, 776, 689, 656, 477; HRMS (ESI) calcd for C₁₈H₁₆CINO₃ [M + Na]⁺ 396.0206, found 396.0203.

9-(Naphthalen-1-yl)-4',5'-dihydro-2'*H*-8-azaspiro[bicyclo[4.3.1]deca[2,4]diene-7,3'-furan]-2',10dione (3k)

Prepared according to the general procedure as described above in 67% yield. Reaction time = 12 h. It was purified by flash chromatography (EtOAc/PE = 1/10) to afford yellow semi-solid. ¹H NMR analysis: >20:1 dr. ¹H NMR (300 MHz, CDCl₃) δ 8.06 (d, *J* = 8.4 Hz, 1H), 7.93 – 7.87 (m, 1H), 7.82 (d, *J* = 8.2 Hz, 1H), 7.57 (m, 2H), 7.49 – 7.41 (m, 1H), 7.21 (d, *J* = 7.2 Hz, 1H), 6.22 (dd, *J* = 11.4, 7.7 Hz, 1H), 6.08 – 5.95 (m, 1H), 5.75 – 5.59 (m, 2H), 4.84 (dd, *J* = 11.4, 7.8 Hz, 1H), 4.55 (ddd, J = 10.7, 8.9, 5.7 Hz, 1H), 4.42 (m, 1H), 3.91 (tt, *J* = 7.2, 3.5 Hz, 1H), 3.46 (dd, *J* = 8.2, 2.3 Hz, 1H), 2.57 – 2.41 (m, 1H), 2.31 – 2.14 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 203.3, 175.6, 133.8, 133.4, 129.9, 128.90, 128.2, 128.1, 126.8, 125.9, 125.6, 124.6, 124.2, 123.3, 122.6, 121.0, 67.3, 66.1, 57.3, 56.2, 35.6, 30.0; IR (film) v_{max} 3300, 2975, 1845, 1732, 1645, 1425, 1331, 1261, 1161, 1030, 955, 836, 705, 6783, 658,442; HRMS (ESI) calcd for C₂₂H₁₉NO₃ [M + Na]⁺ 368.1257, found 368.1252.

130 120 f1 (ppm)

X-Ray Crystallographic Data of 3a

Crystallographic data for **3a** have been deposited with the Cambridge Crystallographic Data Centre as supplementary numbers CCDC 1473250. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

•		
Identification code	3 a	
Empirical formula	C18 H17 N O3	
Formula weight	295.32	
Temperature	173.1500 K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P b c a	
Unit cell dimensions	a = 11.483(2) Å	= 90°.
	b = 10.012(2) Å	= 90°.
	c = 25.315(5) Å	= 90°.
Volume	2910.5(10) Å ³	
Z	8	
Density (calculated)	1.348 Mg/m ³	
Absorption coefficient	0.092 mm ⁻¹	
F(000)	1248	
Crystal size	0.38 x 0.24 x 0.07 mm ³	
Theta range for data collection	3.219 to 27.470°.	
Index ranges	-14<=h<=14, -12<=k<=4, -	31<=l<=32
Reflections collected	11086	
Independent reflections	3307 [R(int) = 0.0382]	
Completeness to theta = 26.000°	99.6 %	
Absorption correction	Semi-empirical from equiva	lents
Max. and min. transmission	1.0000 and 0.8165	
Refinement method	Full-matrix least-squares on	F^2
Data / restraints / parameters	3307 / 0 / 203	
Goodness-of-fit on F ²	1.217	
Final R indices [I>2sigma(I)]	R1 = 0.0692, wR2 = 0.1149	
R indices (all data)	R1 = 0.0828, wR2 = 0.1199	
Extinction coefficient	n/a	
Largest diff. peak and hole	$0.209 \text{ and } -0.242 \text{ e.}\text{Å}^{-3}$	

Table 1. Crystal data and structure refinement for **3a**.

	х	у	Z	U(eq)
01	4504(2)	-1248(2)	4395(1)	38(1)
02	6147(1)	-980(2)	2480(1)	33(1)
03	5063(2)	841(2)	2353(1)	40(1)
N1	5695(2)	1608(2)	3398(1)	23(1)
C1	5558(2)	102(2)	2651(1)	27(1)
C2	6738(2)	-1626(2)	2922(1)	32(1)
C3	6744(2)	-578(2)	3359(1)	29(1)
C4	5629(2)	208(2)	3250(1)	23(1)
C5	4551(2)	-529(2)	3501(1)	24(1)
C6	4596(2)	-313(2)	4092(1)	25(1)
C7	4763(2)	1100(2)	4281(1)	25(1)
C8	5785(2)	1786(2)	3970(1)	22(1)
С9	5888(2)	3238(2)	4126(1)	22(1)
C10	6480(2)	3566(2)	4590(1)	27(1)
C11	6566(2)	4881(2)	4756(1)	32(1)
C12	6043(2)	5892(2)	4467(1)	31(1)
C13	5446(2)	5573(2)	4011(1)	30(1)
C14	5367(2)	4262(2)	3841(1)	27(1)
C15	3652(2)	1882(2)	4243(1)	31(1)
C16	2793(2)	1755(2)	3893(1)	35(1)
C17	2689(2)	853(3)	3444(1)	38(1)
C18	3410(2)	-94(2)	3271(1)	33(1)

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å² x 10^3) for **3a**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} te nsor.

O1-C6	1.215(2)	
O2-C1	1.348(2)	
O2-C2	1.461(3)	
O3-C1	1.200(2)	
N1-C4	1.453(2)	
N1-C8	1.462(2)	
C1-C4	1.523(3)	
C2-C3	1.524(3)	
C3-C4	1.528(3)	
C4-C5	1.574(3)	
C5-C6	1.515(3)	
C5-C18	1.498(3)	
C6-C7	1.506(3)	
C7-C8	1.571(3)	
C7-C15	1.499(3)	
C8-C9	1.511(3)	
C9-C10	1.395(3)	
C9-C14	1.390(3)	
C10-C11	1.385(3)	
C11-C12	1.386(3)	
C12-C13	1.381(3)	
C13-C14	1.384(3)	
C15-C16	1.333(3)	
C16-C17	1.456(3)	
C17-C18	1.333(3)	
C1-O2-C2	109.98(15)	
C4-N1-C8	112.15(15)	
O2-C1-C4	110.47(17)	
O3-C1-O2	122.08(18)	
O3-C1-C4	127.46(19)	
O2-C2-C3	104.68(16)	

Table 3. Bond lengths [Å] and angles [°] for **3a**.

C2-C3-C4	102.70(17)
N1-C4-C1	109.11(16)
N1-C4-C3	113.94(17)
N1-C4-C5	112.90(16)
C1-C4-C3	100.84(16)
C1-C4-C5	109.10(16)
C3-C4-C5	110.20(16)
C6-C5-C4	107.80(15)
C18-C5-C4	113.25(17)
C18-C5-C6	111.84(17)
01-C6-C5	120.77(18)
O1-C6-C7	122.33(18)
C7-C6-C5	116.89(17)
C6-C7-C8	110.25(16)
C15-C7-C6	111.18(17)
C15-C7-C8	112.06(16)
N1-C8-C7	112.98(16)
N1-C8-C9	112.44(16)
C9-C8-C7	110.32(16)
C10-C9-C8	119.00(17)
C14-C9-C8	122.68(18)
C14-C9-C10	118.24(18)
C11-C10-C9	120.95(19)
C10-C11-C12	120.2(2)
C13-C12-C11	119.2(2)
C12-C13-C14	120.8(2)
C13-C14-C9	120.63(19)
C16-C15-C7	128.5(2)
C15-C16-C17	129.7(2)
C18-C17-C16	130.3(2)
C17-C18-C5	128.5(2)

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U33	U ²³	U ¹³	U ¹²
01	58(1)	28(1)	30(1)	6(1)	-3(1)	-9(1)
02	41(1)	32(1)	26(1)	-2(1)	4(1)	9(1)
O3	53(1)	43(1)	24(1)	2(1)	-2(1)	17(1)
N1	26(1)	22(1)	22(1)	1(1)	-1(1)	0(1)
C1	29(1)	28(1)	25(1)	-2(1)	2(1)	3(1)
C2	33(1)	29(1)	36(1)	0(1)	2(1)	8(1)
C3	23(1)	29(1)	34(1)	0(1)	-2(1)	3(1)
C4	24(1)	23(1)	22(1)	0(1)	-1(1)	1(1)
C5	25(1)	23(1)	24(1)	-3(1)	-2(1)	-3(1)
C6	26(1)	25(1)	24(1)	2(1)	0(1)	-2(1)
C7	34(1)	24(1)	18(1)	0(1)	-1(1)	-5(1)
C8	24(1)	22(1)	22(1)	0(1)	-4(1)	1(1)
C9	19(1)	22(1)	24(1)	1(1)	1(1)	-3(1)
C10	28(1)	25(1)	27(1)	2(1)	-4(1)	1(1)
C11	34(1)	34(1)	29(1)	-6(1)	-6(1)	-3(1)
C12	34(1)	23(1)	36(1)	-6(1)	2(1)	-3(1)
C13	31(1)	24(1)	35(1)	4(1)	-3(1)	1(1)
C14	29(1)	24(1)	29(1)	2(1)	-5(1)	-2(1)
C15	34(1)	27(1)	31(1)	-5(1)	12(1)	-4(1)
C16	24(1)	34(1)	48(1)	-4(1)	7(1)	3(1)
C17	24(1)	52(2)	38(1)	-4(1)	-6(1)	2(1)
C18	26(1)	45(1)	29(1)	-7(1)	-5(1)	-3(1)

Table 4. Anisotropic displacement parameters (Å² x 10³) for **3a**. The anisotropic displacement factor exponent takes the form: -2 2 [h² a*²U¹¹ + ... + 2 h k a* b* U¹²]

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å² x 10^3) for **3a**.

	х	у	Z	U(eq)
H2A	7526	-1876	2826	39
H2B	6319	-2419	3034	39
H3A	7425	-8	3334	35
H3B	6724	-990	3705	35
Н5	4640	-1487	3433	29

H7	4986	1064	4655	30
H8	6506	1346	4082	27
H10	6823	2893	4789	32
H11	6975	5085	5063	39
H12	6094	6775	4580	37
H13	5093	6247	3816	36
H14	4962	4065	3533	33
H15	3549	2542	4497	37
H16	2165	2328	3943	43
H17	2012	955	3247	46
H18	3174	-544	2968	40
H1	5070(20)	2030(20)	3263(9)	43(7)

Table 6. Torsion angles [°] for **3a**.

01-C6-C7-C8	132.2(2)
O1-C6-C7-C15	-102.9(2)
O2-C1-C4-N1	144.11(17)
O2-C1-C4-C3	23.9(2)
O2-C1-C4-C5	-92.1(2)
O2-C2-C3-C4	30.8(2)
O3-C1-C4-N1	-36.0(3)
O3-C1-C4-C3	-156.2(2)
O3-C1-C4-C5	87.8(3)
N1-C4-C5-C6	-54.1(2)
N1-C4-C5-C18	70.1(2)
N1-C8-C9-C10	-151.47(18)
N1-C8-C9-C14	31.7(3)
C1-O2-C2-C3	-16.7(2)
C1-C4-C5-C6	-175.63(16)
C1-C4-C5-C18	-51.4(2)
C2-O2-C1-O3	175.3(2)
C2-O2-C1-C4	-4.8(2)
C2-C3-C4-N1	-148.81(17)
C2-C3-C4-C1	-32.1(2)
C2-C3-C4-C5	83.10(19)
C3-C4-C5-C6	74.5(2)
C3-C4-C5-C18	-161.20(17)
C4-N1-C8-C7	-55.9(2)

C4-N1-C8-C9	178.42(16)
C4-C5-C6-O1	-130.2(2)
C4-C5-C6-C7	49.6(2)
C4-C5-C18-C17	-93.3(3)
C5-C6-C7-C8	-47.5(2)
C5-C6-C7-C15	77.4(2)
C6-C5-C18-C17	28.7(3)
C6-C7-C8-N1	48.4(2)
C6-C7-C8-C9	175.25(16)
C6-C7-C15-C16	-31.7(3)
C7-C8-C9-C10	81.4(2)
C7-C8-C9-C14	-95.4(2)
C7-C15-C16-C17	-1.4(4)
C8-N1-C4-C1	-179.04(16)
C8-N1-C4-C3	-67.2(2)
C8-N1-C4-C5	59.5(2)
C8-C7-C15-C16	92.1(3)
C8-C9-C10-C11	-178.04(19)
C8-C9-C14-C13	177.37(19)
C9-C10-C11-C12	1.1(3)
C10-C9-C14-C13	0.6(3)
C10-C11-C12-C13	-0.5(3)
C11-C12-C13-C14	-0.1(3)
C12-C13-C14-C9	0.0(3)
C14-C9-C10-C11	-1.1(3)
C15-C7-C8-N1	-76.0(2)
C15-C7-C8-C9	50.9(2)
C15-C16-C17-C18	1.4(4)
C16-C17-C18-C5	1.3(4)
C18-C5-C6-O1	104.7(2)
C18-C5-C6-C7	-75.5(2)

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for 3a [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)