Supporting Information

Mesoporous NiCo₂O₄ nanospheres with high specific surface area as electrode materials for high-performance supercapacitors

M. J. Pang^a, S. Jiang^b, G. H. Long^c, Y. Ji^{a*}, W. Han^a, B. Wang^d, X. L. Liu^a, Y. L.

Xi^a, F. Z. Xu^a and G. D. Wei^{a**}

a. Key Laboratory of Physics and Technology for Advanced Batteries, Ministry of

Education, College of physics, Jilin University, Changchun, 130012, P. R. China

b. State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.

c. College of Life Sciences, Jilin Agricultural University, Changchun, 130118, P. R. China

d. School of Science, University of Science and Technology Liaoning, Anshan 114051, P. R. China

Fig. S1 High resolution TEM images of $NiCo_2O_4$ nanospheres

Fig. S2 CV curves of NiCo $_2O_4$ electrode and Ni foam substrate at 10mVs⁻¹

Sample	Energy density (maximum)	Power density	Ref.
RGO// NiCo ₂ O ₄	23.9 W h kg ⁻¹	650 W kg ⁻¹	13
AC//C/CoNi ₃ O ₄	29.1 W h kg ⁻¹	130.4 W kg ⁻¹	20
AC//CQDs/NiCo2O4	27.8 W h kg ⁻¹	128 W kg ⁻¹	47
AC//CNT@NiCo2O4	19.7 W h kg ⁻¹	62.5 W kg ⁻¹	49
AC// NiCo ₂ O ₄	27.2 W h kg ⁻¹	102 W kg ⁻¹	50
AC// Ni-Co oxide	12 W h kg ⁻¹	95 W kg ⁻¹	1
RuO ₂ //RuO ₂	18.77 Wh kg ⁻¹	500 W kg^{-1}	2
Fe ₂ O ₃ /FGS//MnO ₂ /FGS	$50.7 \text{ Wh } \text{kg}^{-1}$	100 W kg ⁻¹	3
AC// NiCo ₂ O ₄	29.76 W h kg ⁻¹	159.4 W kg ⁻¹	This work

Table S1 Comparison of the electrochemical performances of the as-prepared AC// $NiCo_2O_4$ ASC with previously reported $NiCo_2O_4$ -based ASCs

Reference

- 1. C. H. Tang, Z. Tang and H. Gong, J. Electrochem. Soc., 2012, 159, A651-A656.
- 2. H. Xia, Y. S. Meng, G. L. Yuan, C. Cui, L. Lu, Electrochem. Solid-State Lett., 2012, 15, A60-A63.
- H. Xia, C. Y. Hong, Bo Li , B. Zhao, Z. X. Lin , M. B. Zheng, S. V. Savilov, S. M. Aldoshin, Adv. Funct. Mater. 2015, 25, 627–635.