Supplementary Information

Proximal environment controlling the reactivity between inorganic

sulfide and heme-peptide model

Zijian Zhao, ^{ab†} Dandan Wang,^{a†} Mingyang Wang,^c Xiaoli Sun^b, Liping Wang,^c Xuri Huang,^b Li Ma,^{ad*} Zhengqiang Li^{a*}

1. Mass spectroscopy data

Table. S1 Theoretical and observed molecular weight of DhHPs and DhAP-6

Samples		MS	
	Theory	Observation	
DhHP-2	771.26	771.2995	
DhHP-3	872.31	872.3673	
DhHP-4	971.37	971.3175	
DhHP-5	1100.42	1100.4764	
DhHP-6	1228.51	1228.4230	
DhAP-6	1162.51	1162.4570	

Fig. S1 MS spectra of DhHP-2, -3, -4, -5, -6 and DhAP-6 in the order from top to bottom.

2. UV-vis spectra of DhAP-6 after the reaction.

Fig. S2 UV–vis spectra of DhAP-6 in the absence of H_2S/HS^- (black), after addition of H_2S/HS^- for 2 min (red) and after addition of H_2S/HS^- for 10 min (blue). Condition: DhAP-6 (5 μ M) reacted with 20 μ M Na₂S in degassed PBS at pH 7.0 and 25 °C.

3. Theoretical calculations of Mulliken atomic charges of ferric center in DhHPs

To gain more understanding of the association kinetic results listed in Table 1 and the effect of proximal hydrogen bond network on sulfide binding, We have employed density functional theoretical (DFT) calculations using the B3LYP functional.¹ Geometries and frequencies were generally computed using the LACVP*(Fe)/6-31G(d,p)(rest) basis set using Gaussian 09.²

Fig. S3 Mulliken atomic charges of Fe^{III} center in DhHPs where 2, 3, 4, 5, and 6 on x-axis are DhHP-2, -3, -4, -5 and -6 respectively

The DFT calculations have been performed on DhHP-2, DhHP-3, DhHP-4, DhHP-5 and DhHP-6. Fig. S2 reveals that Mulliken atomic charges showing a substantial increase, especially when the peptide length increased to 5 or 6. This increase agrees well with their larger association kinetic constants compared with the other DhHPs. We believe that the introduction of Glu5 in DhHP-5 or-6 does enhance the intensity of H-bond network as a consequence of high charge density on the ferric center to promote the sulfide coordination.

(a) Becke, A. D. J. Chem. Phys. 1992, 96, 2155–2160. (b) Becke, A. D. J. Chem. Phys. 1992,97, 9173–9177. (c) Becke, A. D. J. Chem.Phys. 1993, 98, 5648–5652. (d) Lee, C.; Yang, W.; Parr, R. G. Phys.Rev. B 1988, 37, 785–789.
Frisch, M. J. et al. Gaussian 09, Revision D01, Gaussian, Inc., Wallingford CT, 2009.