Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supplementary Information

Tunable electronic structures in MPX₃ (M = Zn, Cd; X = S,

Se) monolayers by strain engineering

Hui Xiang^a, Bo Xu^{*, a}, Yidong Xia^a, Jiang Yin^{*, a, b}, Zhiguo Liu^{a, b}

^a National Laboratory of Solid State Microstructures and Department of Materials

Science and Engineering, Nanjing University, Nanjing, 210093, China

^b Collaborative Innovation Center of Advanced Microstructures, Nanjing University,

Nanjing, 210093, China

*Corresponding Author: <u>xubonju@gmail.com</u> and jyin@nju.edu.cn.

Table S1 Fractional atomic coordinates of optimized MPX₃ (M = Zn, Cd; X = S, Se).

(a) ZnPS₃

atoms	$a = b = 6.011$ Å, $c = 20$ Å; $\alpha = \beta = 0$, $\gamma = 120^{\circ}$		
Zn	0.00000000000000000	0.00000000000000000	0.4846545449292046
Zn	0.66666666666666666	0.3333333333333333333	0.4850448430707976
Р	0.3333333333333333333	0.66666666666666666	0.4295803052753951
Р	0.3333333333333333333	0.66666666666666666	0.5401190837246037
S	0.3335097355927447	0.9955908975003060	0.4040053479529391
S	0.0044091024996939	0.3379188447681581	0.4040053479529391
S	0.6620811552318420	0.6664902577315357	0.4040053479529391
S	0.3331569243982000	0.3377424358330295	0.5656940409544120
S	0.6622575641669703	0.9954144885651777	0.5656940409544120
S	0.0045855114348224	0.6668430756018000	0.5656940409544120

(b) ZnPSe₃

atoms	$a = b = 6.357$ Å, $c = 20$ Å; $\alpha = \beta = 0$, $\gamma = 120^{\circ}$		
Zn	0.000000000000000000	0.00000000000000000	0.4850713578594509
Zn	0.66666666666666666	0.33333333333333333333	0.4846280301405513
Р	0.33333333333333333333	0.66666666666666666	0.4288297908057675
Р	0.33333333333333333333	0.66666666666666666	0.5408695981942314
Se	0.3328026193757395	0.0033116235479310	0.4000175915059568
Se	0.9966883764520691	0.3294910025035210	0.4000175915059568
Se	0.6705089974964790	0.6671973739485408	0.4000175915059568
Se	0.3338640406152052	0.3300217097854047	0.5696817974013944
Se	0.6699782902145952	0.0038423308298147	0.5696817974013944
Se	0.9961576691701853	0.6661359593847949	0.5696817974013944

(c) CdPS₃

atoms	$a = b = 6.300$ Å, $c = 20$ Å; $\alpha = \beta = 0$, $\gamma = 120^{\circ}$		
Cd	0.00000000000000000	0.00000000000000000	0.4852030932124268
Cd	0.66666666666666666	0.3333333333333333333	0.4844962947875754
Р	0.33333333333333333333	0.66666666666666666	0.4284349885625087
Р	0.33333333333333333333	0.66666666666666666	0.5412644004374902
S	0.3326275765813610	0.9771789019852107	0.3995776472129590
S	0.0228210980147894	0.3554486812718628	0.3995776472129590
S	0.6445513187281372	0.6673724167429195	0.3995776472129590
S	0.3340390834095838	0.3561544313481252	0.5701217416943923
S	0.6438455686518750	0.9778846520614729	0.5701217416943923
S	0.0221153479385271	0.6659609165904162	0.5701217416943923

(d) CdPSe₃

atoms	$a = b = 6.618$ Å, $c = 20$ Å; $\alpha = \beta = 0$, $\gamma = 120^{\circ}$		
Cd	0.00000000000000000	0.00000000000000000	0.4852089136771441
Cd	0.66666666666666666	0.33333333333333333333	0.4844904743228581

Р	0.33333333333333333333	0.66666666666666666	0.4277471860140425
Р	0.33333333333333333333	0.66666666666666666	0.5419522029859563
Se	0.3325285778994166	0.9861077254493626	0.3952513264221017
Se	0.0138922745506374	0.3464208591257664	0.3952513264221017
Se	0.6535791408742335	0.6674714154248639	0.3952513264221017
Se	0.3341380820915281	0.3472256078839731	0.5744480624852494
Se	0.6527743921160269	0.9869124742075692	0.5744480624852494
Se	0.0130875257924307	0.6658619179084718	0.5744480624852494

Figure S1 Spatial distributions of wave functions for the bottom of CBM of CdPSe₃. (a) unstrained state, and (b) compressive strain at 8%.

Figure S2 The evolution of band structures calculated by PBE functional under biaxial strain -8%, -4%, 0, 4%, and 8%, where the label from (a) to (d) represents ZnPS₃ (a), ZnPSe₃ (b), CdPS₃ (c), and CdPSe₃ (d), respectively. Red arrows represent the direction of band gap from the VBM to the CBM. The Fermi level is set to zero.

Figure S3 The change of energy gaps of (a) ZnPS₃, (b) ZnPSe₃, (c) CdPS₃ and (d) CdPSe₃ by PBE functional, including $\Gamma \rightarrow \Gamma$ (black), $K \rightarrow K$ (red), $K \rightarrow \Gamma$ (blue), and $\Gamma \rightarrow K$ (green), where the region of I, II, and III represents the indirect, direct, and indirect band gap, respectively.