Supporting Information

Facile synthesis of ZnCo₂O₄ mesoporous structures with enhanced electrocatalytic oxygen evolution reaction properties

Jingchao Zhang, Daojun Zhang*, Yujing Yang, Jingyu Ma, Shufang Cui, Yanmei Li,

Baiqing Yuan*

College of Chemistry and Chemical Engineering, Anyang Normal University,

Anyang 455000, Henan, China

Henan Province Key Laboratory of New Optoelectronic Functional Materials.

* Corresponding author. Tel.: +86 372 2900040.

E-mail: zhangdj0410@sohu.com , baiqingyuan1981@126.com

Fig.S1 The size distribution of the length (left) and diameter (right) of spindle-like $ZnCo_2O_4$ precursors.

Fig.S2 The XRD pattern of spindle-like ZnCo₂O₄ precursors obtained at 180 °C for 12 h.

Fig.S3 SEM images of spindle-like $ZnCo_2O_4$ precursors obtained at 180 °C for 12 h with different amount of PVP: (a) 0 mg, (b) 50 mg, (c) 100 mg, (d) 150 mg.

Fig.S4 SEM images of spindle-like $ZnCo_2O_4$ precursors obtained at 180 °C for 12 h with different amount of hexylamine: (a) 0 μ L, (b) 25 μ L, (c) 50 μ L, (d) 75 μ L.

Fig.S5 SEM images of spindle-like $ZnCo_2O_4$ precursors obtained at 180 °C for 12 h with different reactant concentrations: (a) 1/4, (b) 1/2, (c) 3/4.

Fig.S6 SEM images of spindle-like $ZnCo_2O_4$ precursors obtained at 180 °C with different reaction time: (a) 0 h, (b) 0.5 h, (c) 1 h, (d) 2 h, (e) 3 h, (f) 4 h, (g) 5 h, (h) 6 h, (i)7 h, (j) 8 h, (k) 9 h, (l) 10 h, (m) the photographs of the above samples.

Fig.S7 SEM images of spindle-like $ZnCo_2O_4$ precursors synthesized by keeping the reaction time of 12 h with different reaction temperatures: (a) 120 °C, (b) 140 °C, (c) 160 °C, (d) 170 °C, (e) 175 °C, (f) the photograph of the corresponding precursors in (a-e).

Fig.S8 The isotherm plot and the corresponding pore distribution curve of spindle-like ZnCo₂O₄ precursors.

Fig.S9 Line scan and corresponding element distribution of a spindle-like $ZnCo_2O_4$ precursor synthesized at 180 °C for 12 h.

Fig.S10 The XRD pattern of truncated drum-like ZnCo₂O₄ precursors obtained at 180 °C for 12 h.

Catalysts	Electrolyt	Onset potential	Overpotential (mV) Tafel slope		Ref.
	e		@10 mAcm ⁻²	(mV/dec)	
NiCo2O4 nanosheets/NF	1 M KOH		360	50-60	66
NiCo ₂ O ₄ /GC	1 M KOH		400	50-60	
$Mn_{2.1}Co_{0.9}O_4$	0.1 M KOH		1.76 V vs. RHE (530)	31	67
NiCo2O4 nanowires	1 M KOH		460	90	68
$La_{0.8}Sr_{0.2}Co_{0.2}Fe_{0.8}O_{3}\text{-}_{\delta}$	0.1 M KOH	1.583Vvs.RHE	1.643 V vs. RHE (413)	81.59	69
(LSCF-10%)					
CoxSy@C-1000	0.1 M KOH		470		70
ZnCo2O4 truncated drum	1 M KOH		419	63.52	Our
$ZnCo_2O_4$ spindle	1 M KOH		389	57.32	work

Table 1 Comparison of OER activity in alkaline medium for different electrocatalytic materials

Fig.S11 (A) XPS spectra of ZnCo₂O₄ with different morphologies, (B) Co 2p XPS spectra of (a) spindle-like samples. (b) truncated drum shaped samples.

Table 2 Comparison of the ratios of Co^{3+}/Co^{2+} by integrating the XPS peaks of Co2p of $ZnCo_2O_4$ microcrystals with different morphologies.

Areas of fitted peak Sample	Co ³⁺ (2p _{3/2})	Co ²⁺ (2p _{3/2})	Co ³⁺ (2p _{1/2})	Co ²⁺ (2p _{1/2})	Co ³⁺ /Co ²⁺
ZnCo ₂ O ₄ truncated drum	116036.5	97289.34	49383.88	37028.75	1.23
ZnCo ₂ O ₄ porous spindle	112678.6	62529.64	49666.42	23274.31	1.89

Fig.S12 The STEM image of an individual $ZnCo_2O_4$ micro-spindle (inset cycles present mesopores obtained from the annealed $ZnCo_2O_4$ precursor).

Fig.S13 SEM images of truncated drum shaped $ZnCo_2O_4$ precursors obtained at 180 °C for 12 h with 0.3 mL of triethylamine.