FeF₃-catalyzed MCR in PEG-400: ultrasound assisted synthesis of *N*-substituted 2aminopyridines

Dinne Naresh Kumar Reddy,^{a,b} Kothapalli Bannoth Chandrasekhar,^b Yaddanapudi Sesha Siva Ganesh,^a G. Rajeshwar Reddy,^a J. Pradeep Kumar,^a Ravi Kumar Kapavarapu^c and Manojit Pal^{d,*}

 ^aCustom Pharmaceuticals Services and Dr. Reddy's Laboratories Ltd, Bollaram Road, Miyapur, Hyderabad 500049; India.
^bCollege of Engineering, JNTU, Anantapur 533 003, Andhra Pradesh, India.
^cDoctoral Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal.
^dDr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, India.

E-mail: manojitpal@rediffmail.com

General methods: Unless stated otherwise, solvents and chemicals were obtained from commercial sources and were used without further purification. Reactions were monitored by thin layer chromatography (TLC) on silica gel plates (60 F254), visualizing with ultraviolet light or iodine spray. Flash chromatography was performed on silica gel (100-200 mesh) using hexane and ethyl acetate. ¹H and ¹³C NMR spectra were determined in CDCl₃ solution by using 400 or 100 MHz spectrometers, respectively. Proton chemical shifts (δ) are relative to tetramethylsilane (TMS, $\delta = 0.00$) as internal standard and expressed in ppm. Spin multiplicities are given as s (singlet), d (doublet), t (triplet) and m (multiplet) as well as b (broad). Coupling constants (*J*) are given in hertz. Infrared spectra were recorded on a FT-IR spectrometer. Melting points were determined using melting point B-540 apparatus and are uncorrected. HRMS was determined using waters LCT premier XETOF ARE-047 apparatus. Reactions were performed using a laboratory ultrasonic bath Bandelin SONOREXTM SUPER RK 514 BH model producing irradiation of 35 kHz.

Typical procedure for the synthesis of 5a: To a mixture of acetophenone (**1a**, 150 mg, 1.25 mmol), benzaldehyde (**2a**, 130mg, 1.25 mmol), *o*-toluidine (**3a**, 134 mg, 1.25 mmol), and malononitrile (**4**, 82 mg, 1.25 mmol) in PEG-400 (0.3 mL) was added FeF₃ (14.1mg, 10 mol%) at room temperature. The mixture was then stirred at 60 °C under ultrasound irradiation in open air for 3h (the reaction was monitored by TLC). After completion of the reaction the mixture was diluted with EtOAc (10 mL) and washed with cold water (2 x 5 mL). The organic layer was collected, dried over anhydrous Na₂SO₄, filtered and concentrated under low vacuum. The residue was purified by column chromatography over silica gel (100-200 mesh) using EtOAc-hexane to give the desired product.

Table S-1. Ultrasound assisted synthesis of *N*-substituted 2-aminopyridines (**5**) via FeF₃ catalyzed MCR.

ArCOMe 1	Ar'NH ₂ 3))))	R CN		
+ RCHO 2	CH ₂ (CN) ₂ FeF 4 3h	→ ₃, PEG-400 , 60°C, air	N NHAr' 5		
Entry	Acetophenone (1)	Aldehyde (2)	Aniline (3)	Product (5)	Yield (%)
1	Acetophenone 1a	Bezaldehyde 2a	o-Toludine 3a	CN NNH 5a	92
2	1a	2a	Aniline 3b		90
3	1a	2a	2,3- Dimethyl aniline 3c		92
4	1a	4-Methoxy bezaldehyde 2b	4-Flouro aniline 3d	CN CN F 5d	89
5	1a	Thiophene-2- aldehyde 2c	3b		90

6	1a	Isovaleraldehyde 2d	3a	CN N NH 5f	88
7	4-Methoxy acetophenone 1b	2a	3a	CN NNH 5g	89
8	1a	2d	3b		90
9	1a	4-Nitro benzaldehyde 2e	3b		92
10	1a	4-Methoxy benzaldehyde 2b	4-Cyano aniline 3e		87
11	1a	2c	4-Bromo aniline 3f	S CN N N Br 5k	89
12	4-Chloro acetophenone 1c	2a	2,3- Dimethyl aniline 3c		90

13	1a	4-Bromo bezaldehyde 2f	3a	Br CN N NH 5m	86
14	1a	Furan-2-aldehyde 2g	3a	CN N Sn	85
15	4-Cyano acetophenone 1d	2a	Зс		91
16	1a	Butyraldehyde 2h	3c		85
17	1-(Furan-2- yl)ethanone 1e	2a	3 a	CN CN NH 5q	51
18	1c	2a	<i>n</i> -BuNH ₂ 3g		50

Spectral data

4,6-Diphenyl-2-(o-tolylamino)nicotinonitrile (5a)

Off white solid, mp:194-196 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.13 (d, *J* = 7.6 Hz, 1H), 8.03-8.00 (m, 2H), 7.69-7.66 (m, 2H), 7.58-7.52 (m, 3H), 7.46-7.43 (m, 3H), 7.33-7.27 (m, 4H), 7.14 (t, *J* = 7.2 Hz, 1H), 2.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 159.6, 156.6, 153.1, 148.3, 143.1, 138.3, 137.4, 130.6, 130.2, 129.8, 129.0 (2C), 128.7 (2C), 128.2 (2C), 127.3 (2C), 126.5, 124.3 (2C), 122.7, 111.1, 89.5, 18.0; IR (KBr, cm⁻¹): 3334, 2963, 2214, 1601, 1582, 1491; HRMS (ESI) ([M] ⁺1) calcd for C₂₅H₂₀N₃O: 362.1657, found: 362.1669.

4,6-Diphenyl-2-(phenylamino)nicotinonitrile (5b)

Pale yellow solid, mp: 213-215°C; ¹H NMR (400 MHz, CDCl₃): δ 8.08 (dd, $J_{1,2} = 2.4$ Hz, $J_{1,3} = 8.0$ Hz, 2H), 7.77 (d, J = 7.2 Hz, 2H), 7.67-7.65 (m, 2H), 7.57-7.47 (m, 6H), 7.43 (t, J = 7.6 Hz, 2H), 7.33 (s, 1H), 7.27-7.26 (m, 1H), 7.16 (t, J = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 158.9, 156.5, 155.4, 138.9, 137.8, 136.9, 130.3, 129.9, 128.9 (2C), 128.9 (2C), 128.8(2C), 128.1 (2C), 127.4(2C), 123.5, 120.5 (2C), 117.0, 111.4, 90.0; IR (KBr, cm⁻¹): 3335, 2215, 1602, 1582, 1497; HRMS (ESI) ([M] ⁺1) calcd for C₂₄H₁₈N₃: 348.1501, found: 348.1514.

2-((2,3-Dimethylphenyl)amino)-4,6-diphenylnicotinonitrile (5c)

Off white solid, mp: 172-174°C; ¹H NMR (400 MHz, CDCl₃): δ 7.99 – 7.95 (m, 2H), 7.80 (d, J =

8.0Hz, 1H), 7.69-7.65 (m, 2H), 7.57-7.51 (m, 3H), 7.43-7.40 (m, 3H), 7.29 (s, 1H), 7.22 (t, J = 8.0 Hz, 1H), 7.09-7.05 (m, 2H), 2.37 (s, 3H), 2.28 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 158.8, 157.4, 155.3, 137.8, 137.4, 137.1, 136.8, 130.1, 129.8, 129.6, 128.9 (2C), 128.7 (2C), 128.2 (2C), 127.3 (2C), 126.6, 125.5, 121.8, 117.2, 110.8, 89.5, 20.7, 14.0; IR (KBr, cm⁻¹) :3395, 2965, 2209, 1603, 1586, 1447; HRMS (ESI) ([M]⁺1) calcd for C₂₆H₂₂N₃: 376.1814, found: 376.1801.

2-((4-Fluorophenyl)amino)-4-(4-methoxyphenyl)-6-phenylnicotinonitrile (5d)

Yellow solid, mp: 169-172°C; ¹H NMR (400 MHz, CDCl₃): δ 8.13 (d, *J* = 8.0 Hz, 1H), 8.03-8.01 (m, 2H), 7.65-7.61 (m, 2H), 7.52 (t, *J* = 8.0 Hz, 3H), 7.39 (d, *J* = 8.4 Hz, 3H), 7.03-6.94 (m, 4H), 3.85 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 161.5, 158.0, 159.1 & 157.1 (d, ¹*J* _{C,F} = 241.9 Hz), 155.1, 149.0, 144.5, 133.3,130.9, 130.8 (2C), 129.6 & 129.5 (d, ³*J* _{C,F} = 6.1 Hz) (2C), 128.9 (2C), 127.3 (2C), 127.1, 115.6, 115.3 (d, ²*J* _{C,F} = 22.9 Hz) (2C), 114.7 (2C), 114.4, 113.6, 89.6, 55.5; IR (KBr, cm⁻¹): 3336, 2952, 2931, 2216, 1619, 1582, 1498,1210; HRMS (ESI) ([M] ⁺1) calcd for C₂₅H₁₉N₃OF: 396.1512, found: 396.1513.

6-Phenyl-2-(phenylamino)-4-(thiophen-2-yl)nicotinonitrile (5e)

Pale yellow solid, mp:186-188 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.07 (dd, $J_{1,2} = 2.4$ Hz, $J_{1,3} = 7.6$ Hz, 2H), 7.89 – 7.88 (m, 1H), 7.75 (d, J = 7.6 Hz, 2H), 7.56 (d, J = 5.2 Hz, 1H), 7.52 – 7.47 (m, 3 H), 7.43 – 7.41 (m, 3H), 7.28 – 7.26 (m, 1H), 7.24 – 7.22 (m, 1H), 7.16 (t, J = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 159.2, 156.9, 146.9, 138.8, 138.7, 137.8, 130.4, 130.3, 128.9,

128.8 (2C), 128.7, 128.5 (2C), 127.4 (2C), 123.6, 120.7 (2C), 117.5, 110.4, 90.8; IR (KBr, cm⁻¹) :3328, 2216, 1603, 1549, 1497; HRMS (ESI) ([M] ⁺1) calcd for $C_{22}H_{16}N_3S$: 354.1065, found: 354.1068.

4-Isobutyl-6-phenyl-2-(o-tolylamino)nicotinonitrile (5f)

Off White color solid, mp:131-133 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.14 (d, *J* = 8.0 Hz, 1H), 7.98 (dd, *J*_{1,2} =3.2 Hz, *J*_{1,3} = 4.8 Hz, 2H), 7.58 – 7.49 (m, 3H), 7.44 (d, J = 3.2 Hz, 2H), 7.09 – 7.08 (m, 3H), 2.72 (d, *J* = 7.6 Hz, 2H), 2.37 (s, 3H), 2.17-2.11 (m, 1H), 1.04 (d, *J* = 6.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 158.5, 157.0, 156.0, 139.1, 139.0, 138.0, 130.6, 130.5, 128.7 (2C), 127.3 (2C), 126.4 (2C), 122.3, 116.7, 111.7, 91.4, 43.9, 29.6, 22.4 (2C), 18.0; IR (KBr, cm⁻¹) :3316, 2952, 2864, 2216, 1619, 1582, 1498; HRMS (ESI) ([M] ⁺1) calcd for C₂₃H₂₄N₃: 342.1970, found: 342.1984.

6-(4-Methoxyphenyl)-4-phenyl-2-(o-tolylamino)nicotinonitrile (5g)

Brown color solid, mp: 199-201°C; ¹H NMR (400 MHz, CDCl₃): δ 8.12 (d, *J* = 8.0 Hz, 1H), 8.0 (d, *J* = 8.8 Hz, 2H), 7.68 -7.65 (m, 2H), 7.57 - 7.50 (m, 3H), 7.33 - 7.27 (m, 2H), 7.25 (s, 1H), 7.14 - 7.10 (m, 2H), 6.97 (d, *J* = 8.0 Hz, 2H), 3.87 (s, 3H), 2.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 160.0, 157.4, 156.4, 155.8, 141.8, 137.7, 136.6, 136.3, 130.6, 129.7, 128.9 (2C), 128.9 (2C), 128.2 (2C), 126.4 (2C), 124.3, 122.3, 114.1 (2C), 110.3, 90.8, 55.3, 18.0; IR (KBr, cm⁻¹) : 3423, 2962, 2923, 2200, 1598,1483, 1168; HRMS (ESI) ([M]⁺1) calcd for C₂₆H₂₂N₃O: 392.1763, found: 392.1747.

4-Isobutyl-6-phenyl-2-(phenylamino)nicotinonitrile (5h)

White solid, mp:124-126°C; ¹H NMR (400 MHz, CDCl₃): δ 8.03 (dd, $J_{1,2} = 2.0$ Hz, $J_{1,3} = 8.0$ Hz, 2H), 7.74 (d, J = 8.0 Hz, 2H), 7.50 -7.43 (m, 3H), 7.41 (t, J = 8.0 Hz, 2H), 7.12-7.09 (m, 3H), 2.71 (d, J = 6.8 Hz, 2H), 2.13-2.06 (m, 1H), 1.03 (d, J = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 158.4, 157.0, 156.1, 139.0, 138.0, 130.1, 128.9 (2C), 128.7 (2C), 127.3 (2C), 123.3, 120.3 (2C), 116.5, 112.0, 91.0, 44.0, 29.7, 22.3 (2C); IR (KBr, cm⁻¹): 3335, 2953, 2863, 2216, 1619, 1582, 1498; HRMS (ESI) ([M] ⁺1) calcd for C₂₂H₂₂N₃: 328.1814, found: 328.1810.

4-(4-Nitrophenyl)-6-phenyl-2-(phenylamino)nicotinonitrile (5i)

Orange solid, mp: 208-210 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.43 (d, *J* = 8.4 Hz, 2H), 8.07 (d, *J* = 3.6 Hz, 2H), 7.84 (d, *J* = 8.8 Hz, 2H), 7.75 (d, *J* = 8.4 Hz, 2H), 7.51-7.42 (m, 5H), 7.31-7.26 (m, 2H), 7.21-7.18 (m, 1H); ¹H NMR (400 MHz, D₂O exchange): δ 8.43 (d, J = 8.0 Hz, 2H), 8.07 (d, *J* = 4.0 Hz, 2H), 7.84 (d, *J* = 8.8 Hz, 2H), 7.75 (d, *J* = 8.0 Hz, 2H), 7.52-7.49 (m, 3H), 7.45-7.43 (m, 2H), 7.31 (s, 1H), 7.22-7.16 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 159.6, 156.6, 153.1, 148.3, 143.1, 138.5, 137.4, 130.7, 129.4 (2C), 129.0, 128.9 (2C), 127.4 (2C), 124.5 (2C), 124.0 (2C), 120.9 (2C), 116.3, 110.9, 89.5; IR (KBr, cm⁻¹): 3335, 2217, 1607, 1579, 1514, 1498, 1352; HRMS (ESI) ([M]⁺1) calcd for C₂₄H₁₇N₄O₂: 393.1352, found: 393.1349.

2-((4-Cyanophenyl)amino)-4-(4-methoxyphenyl)-6-phenylnicotinonitrile (5j)

Off white color solid, mp:157-159 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.97-7.90 (m, 3H), 7.65-7.60 (m, 2H), 7.51 (t, *J* = 7.2 Hz, 3H), 7.38 (d, *J* = 8.0 Hz, 3H), 7.02-6.93 (m, 4H), 3.92 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 161.7, 159.8, 158.7, 148.1, 137.4, 135.7, 134.1 (2C), 133.4, 129.1 (2C), 128.8 (2C), 128.6 (2C), 128.3, 128.0 (2C), 115.0, 114.5 (2C), 111.9, 111.7, 108.7, 89.6, 55.2; IR (KBr, cm⁻¹): 3394, 2913, 2254, 2223, 1606, 1572, 1449, 1178; HRMS (ESI) ([M] ⁺1) calcd for C₂₆H₁₉N₄O: 403.1559, found: 403.1560.

2-((4-Bromophenyl)amino)-6-phenyl-4-(thiophen-2-yl)nicotinonitrile (5k)

Brown color solid, mp: 196-198°C; ¹H NMR (400 MHz, CDCl₃): δ 8.04 (dd, $J_{1,2}$ = 3.2 Hz, $J_{1,3}$ = 8.0 Hz, 2H), 7.89 (dd, $J_{1,2}$ = 2.8 Hz, $J_{1,3}$ = 8.0 Hz, 1H), 7.65-7.63 (m, 2H), 7.57-7.49 (m, 7H), 7.44 (s, 1H), 7.24-7.22 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 159.2, 156.9, 149.3, 146.9, 137.9, 137.6, 131.8 (2C), 130.5, 129.1, 128.9 (2C), 128.5 (2C), 127.3 (2C), 122.3 (2C), 117.9, 116.3, 110.7, 88.1; IR (KBr, cm⁻¹): 3343, 2218, 1620, 1573, 1490; HRMS (ESI) ([M] ⁺1) calcd for C₂₂H₁₅N₃SBr: 432.0170, found: 432.0199.

6-(4-Chlorophenyl)-2-((2,3-dimethylphenyl)amino)-4-phenylnicotinonitrile (5l)

Off white solid, mp: 152-154°C; ¹H NMR (400 MHz, CDCl₃): δ 7.91 (dd, $J_{1,2}$ = 2.0 Hz, $J_{1,3}$ = 8.8 Hz, 2H), 7.72 -7.65 (m, 3H), 7.57-7.51 (m, 3H), 7.40 (dd, $J_{1,2}$ = 2.0 Hz, $J_{1,3}$ = 6.8 Hz, 2H), 7.24 (s, 1H), 7.21 (t, J = 8.0 Hz, 1H), 7.09-7.06 (m, 2H), 2.37 (s, 3H), 2.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 157.5, 157.4, 155.5, 141.8, 137.5, 136.9, 136.7, 136.3, 136.2, 129.9, 129.0 (2C), 128.9 (2C), 128.5 (2C), 128.1 (2C), 126.8, 125.5, 121.9, 117.0, 110.5, 89.8, 20.7, 14.0; IR (KBr, cm⁻¹): 3307, 2916, 2218, 1583, 1569, 1487; HRMS (ESI) ([M]⁺1) calcd for C₂₆H₂₁N₃Cl: 410.1424, found: 410.1431.

4-(4-Bromophenyl)-6-phenyl-2-(o-tolylamino)nicotinonitrile (5m)

Pale yellow color solid, mp:158-160 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.11 (d, *J* = 8.0 Hz, 1H), 8.02-7.98 (m, 2H), 7.70 (dd, *J*_{1,2} = 1.6 Hz, *J*_{1,2} = 8.4 Hz, 2H), 7.57-7.50 (m, 4H), 7.46 (t, *J* = 4.0 Hz, 2H), 7.33 -7.27 (m, 3H), 7.15-7.12 (m, 1H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 158.2, 155.3, 153.4, 143.3, 137.2, 135.2, 132.3, 132.2 (2C), 130.5, 129.9 (2C), 129.1, 128.9 (2C), 127.3 (2C), 126.5, 124.5, 122.2, 122.0, 115.5, 112.9, 89.7, 18.0; IR (KBr, cm⁻¹): 3446, 2956, 2235, 1658, 1608, 1486; HRMS (ESI) ([M]⁺1) calcd for C₂₅H₁₉N₃Br: 440.0762, found: 440.0753.

4-(Furan-2-yl)-6-phenyl-2-(o-tolylamino)nicotinonitrile (5n)

Brown color solid, mp:147-149 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.10 (d, *J* = 8.0 Hz, 1H), 8.04

- 8.02 (m, 2H), 7.67 (d, J = 7.2 Hz, 2H), 7.53 (d, J = 4.0 Hz, 1H), 7.47-7.44 (m, 3H), 7.31-7.28 (m, 2H), 7.13 (t, J = 7.6 Hz, 2H), 6.65 (dd, $J_{1,2} = 1.6$ Hz, $J_{1,3} = 3.6$ Hz, 1H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 158.7, 155.6, 153.1, 146.6, 144.5, 138.8, 138.3, 130.6, 130.2, 128.7 (2C), 127.3 (2C), 126.5, 124.3, 124.2, 120.7, 116.5, 113.1, 112.6, 106.2, 86.0, 18.0; IR (KBr, cm⁻¹) :3434, 2953, 2198, 1602, 1556, 1487, 1032; HRMS (ESI) ([M]⁺1) calcd for C₂₃H₁₈N₃O: 352.1450, found: 352.1458.

6-(4-Cyanophenyl)-2-((2,3-dimethylphenyl)amino)-4-phenylnicotinonitrile (50)

Brown color solid, mp:198-200 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.06 (d, *J* = 8.8 Hz, 2H), 7.69-7.64 (m, 4H), 7.58-7.55 (m, 2H), 7.39-7.29 (m, 3H), 7.22 (t, *J* = 7.6 Hz, 1H), 7.12-6.92 (m, 2H), 2.37 (s, 3H), 2.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 157.4, 156.4, 155.8, 141.8, 137.7, 136.6, 136.3, 132.4 (2C), 130.1, 129.2, 129.0 (2C), 128.1 (2C), 127.4 (2C), 127.1, 125.6, 122.1, 118.5, 116.7, 113.3, 111.2, 90.8, 20.7, 14.0; IR (KBr, cm⁻¹): 3308, 2938, 2228, 2204, 1606, 1583, 1492; HRMS (ESI) ([M]⁺1) calcd for C₂₇H₂₁N₄: 401.1766, found: 401.1749.

2-((2,3-Dimethylphenyl)amino)-6-phenyl-4-propylnicotinonitrile (5p)

Brown gummy solid; ¹H NMR (400 MHz, CDCl₃): δ 7.93 (d, *J* = 4.0 Hz, 2H), 7.78 (d, *J* = 8.0 Hz, 1H), 7.41-7.40 (m, 3H), 7.16-7.11 (m, 2H), 7.04-7.02 (m, 1H), 6.90 (s, 1H), 2.82 (t, *J* = 7.6 Hz, 2H), 2.35 (s, 3H), 2.26 (s, 3H), 1.82-1.76 (m, 2H), 1.07 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 158.6, 157.0, 156.1, 139.0, 138.1, 130.6, 129.0 (2C), 128.9, 127.6 (2C), 126.6, 125.5, 123.3, 120.0, 115.3, 112.1, 89.5, 42.4, 29.6, 20.9, 13.8, 13.6; IR (KBr, cm⁻¹): 3316, 2916, 2864, 2218, 1620, 1582, 1498; HRMS (ESI) ([M]⁺1) calcd for C₂₃H₂₄N₃: 342.1970, found: 342.1972.

6-(Furan-2-yl)-4-phenyl-2-(o-tolylamino) nicotinonitrile (5q)

Pale yellow solid, mp: 166-168 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.07 (d, *J* = 8.0 Hz, 1H), 7.61 – 7.59 (m, 2H), 7.47 – 7.45 (m, 4H), 7.22 -7.18 (m, 2H), 7.02 – 6.95 (m, 3H), 6.66 (t, *J* = 7.6 Hz, 1H), 6.47 (dd, *J*_{1,2} = 2.0 Hz, *J*_{1,3}= 3.6 Hz, 1H), 2.31(s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 156.8, 155.2, 152.9, 150.1, 144.5, 137.1, 136.8, 130.5, 129.8, 129.3, 128.9(2C), 128.1(2C), 126.4, 124.2, 122.2, 117.1, 112.4, 112.1,109.1, 89.4, 18.0; IR (KBr, cm⁻¹) 3431, 2201, 1602, 1541,1478, 1012; ESI-MS (M+1); 352.1.

2-(3-Oxo-1,3-diphenylpropyl)malononitrile (6)

White solid, mp 122- 124 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.98 (d, *J* = 7.6 Hz, 2H), 7.64-7.51 (m, 1H), 7.49-7.39 (m, 7H), 4.65 (d, *J* = 4.8 Hz, 1H), 3.98-3.93 (m, 1H), 3.70-3.61 (m, 2H); IR (KBr, cm⁻¹) 2901, 2255, 1682, 1449, 1186; MS (ESI) (M+NH₃); 292.10.

3-(4-Chlorophenyl)-5-phenyl-2,6-dicyanoanilines (7)

Off white solid; mp: 246-248°C; ¹H NMR (400 MHz, CDCl₃): δ 7.58 (d, *J* = 8.0 Hz, 2H), 7.53 – 7.47 (m, 7H), 6.86 (s, 1H), 5.39 (s, 2H); IR (KBr): 3466, 3365, 2214, 1499 cm⁻¹

2-(4-Methoxybenzylidene)malononitrile (8)

Pale yellow solid, mp 114-116 °C; ¹H NMR (400 MHz, CDCl₃): 7.92 (d, *J* = 8.0 Hz, 2H), 7.65 (s, 1H), 7.03 (d, *J* = 8.0 Hz, 2H), 3.91 (s, 3H); IR (KBr, cm⁻¹) 2984, 2222, 1605, 1456.

Procedure for the scale up of compound 5i

To a mixture of acetophenone (**1a**, 4.0 g, 0.033 mmol), 4-nitrobenzaldehyde (2e, 5.03 g, 0.033 mmol), aniline (**3b**, 3.1 g, 0.033 mmol), malononitrile and 4, 2.2 g, 0.033 mmol) in PEG-400 (8 mL) was added FeF₃ (0.375 g, 10 mol%) at room temperature. The mixture was then stirred at 60 °C under ultrasound irradiation in open air for 3h (the reaction was monitored by TLC). After completion of the reaction the mixture was diluted with EtOAc (60 mL) and filtered to separate the catalyst. The filtrate was collected, washed with cold water (2 x 30 mL), dried over anhydrous Na₂SO₄, filtered and concentrated under low vacuum. The residue was purified by column chromatography over silica gel (100-200 mesh) using EtOAc-hexane to give the desired product 5i (11.75 g, 90%).

Recovery of catalyst: The filtered catalyst was collected, dried under vacuum below 50 °C and reused for the next cycle.

Pharmacology

Materials and Methods

Cells and Reagents: HEK 293 and Sf9 cells were obtained from ATCC (Washington D.C., USA). HEK 293 cells were cultured in DMEM supplemented with 10% fetal bovine serum (Invitrogen Inc., San Diego, CA, USA). Sf9 cells were routinely maintained in Grace's supplemented medium (Invitrogen) with 10% FBS. RAW 264.7 cells (murine macrophage cell line) were obtained from ATCC and routinely cultured in RPMI 1640 medium with 10% fetal bovine serum (Invitrogen Inc.). cAMP was purchased from SISCO Research Laboratories (Mumbai, India). PDElight HTS cAMP phosphodiesterase assay kit was procured from Lonza (Basel, Switzerland).

PDE4B protein production and purification

PDE4B cDNA was sub-cloned into pFAST Bac HTB vector (Invitrogen) and transformed into

DH10Bac (Invitrogen) competent cells. Recombinant bacmids were tested for integration by PCR analysis. Sf9 cells were transfected with bacmid using Lipofectamine 2000 (Invitrogen) according to manufacturer's instructions. Subsequently, P3 viral titer was amplified, cells were infected and 48 h post infection cells were lysed in lysis buffer (50 mM Tris-HCl pH 8.5, 10 mM 2-Mercaptoethanol, 1 % protease inhibitor cocktail (Roche), 1 % NP40). Recombinant His-tagged PDE4B protein was purified as previously described elsewhere (Wang et al., 1997). Briefly, lysate was centrifuged at 10,000 rpm for 10 min at 4°C and supernatant was collected. Supernatant was mixed with Ni-NTA resin (GE Life Sciences) in a ratio of 4:1 (v/v) and equilibrated with binding buffer (20 mM Tris-HCl pH 8.0, 500 mM-KCl, 5 mM imidazole, 10 mM 2-mercaptoethanol and 10 % glycerol) in a ratio of 2:1 (v/v) and mixed gently on rotary shaker for 1 hour at 4°C. After incubation, lysate-Ni-NTA mixture was centrifuged at 4,500 rpm for 5 min at 4°C and the supernatant was collected as the flow-through fraction. Resin was washed twice with wash buffer (20 mM Tris-HCl pH 8.5, 1 M KCl, 10 mM 2-Mercaptoethanol and 10% glycerol). Protein was eluted sequentially twice using elution buffers (Buffer I: 20 mM Tris-HCl pH 8.5, 100 mM KCl, 250 mM imidazole, 10 mM 2-mercaptoethanol, 10% glycerol, Buffer II: 20 mM Tris-HCl pH 8.5, 100 mM KCl, 500 mM imidazole, 10 mM 2-mercaptoethanol, 10% glycerol). Eluates were collected in four fractions and analyzed by SDS-PAGE. Eluates containing PDE4B protein were pooled and stored at -80°C in 50% glycerol until further use.

PDE4B enzymatic assay

The inhibition of PDE4B enzyme was measured using PDElight HTS cAMP phosphodiesterase assay kit (Lonza) according to manufacturer's recommendations. Briefly, 10 ng of PDE4B enzyme was pre-incubated either with DMSO (vehicle control) or compound for 15 min before incubation with the substrate cAMP (5 μ M) for 1 h. The reaction was halted with stop solution followed by incubation with detection reagent for 10 minutes in dark. Luminescence values (RLUs) were measured by a Multilabel plate reader (Perklin Elmer 1420 Multilabel counter). The percentage of inhibition was calculated using the following formula:

% inhibition = $\frac{(RLU \text{ of vehicle control} - RLU \text{ of inhibitor})}{RLU \text{ of vehicle control}} X 100$

Docking studies

To understand the binding affinity and molecular interactions of compounds in the binding pocket of PDE4B the molecular docking simulations were carried out using GRIP method of docking in Biopredicta module of Vlife MDS (Molecular Design Suite) 4.6.

Docking Method: The PDE4B protein in complex with rolipram obtained from Protein Data Bank (PDB ID: 1XMY) was used as the receptor for docking. The protein structure was visualized and pre-processed with Dock Prep tool of UCSF. Ligand geometries were optimized by energy minimization using Merck Molecular Force Field MMFF94 and Gasteiger-Marsili charges for the atoms till a gradient of 0.001 kcal/mol/A° was reached, maintaining the template structure rigid during the minimization. The active site pocket of the co-crystallized ligand was selected for docking. The GRIP batch docking and subsequent scoring were performed using the default parameters of the Biopredicta program. The following parameters were followed in the standard docking protocol, number of placements: 30, rotation angle: 30°, exhaustive docking method, scoring function: PLP score.

Results: The GRIP docking employs PLP (Piecewise Linear Pair wise Potential) scoring function for protein ligand interactions which includes hydrogen bonding, steric interactions, van der Waals interactions, hydrophobic interactions and electrostatic interactions.

Post docking analysis involved evaluation of interaction energies between each ligand and PDE4B protein for best ligand pose inside the receptor as PLP score. The PLP scores of compounds were compared with the reference Rolipram (Table S-2).

For consensus docking results and to validate the accuracy, molecular simulations were also done with **SWISSDOCK** web server and ΔG values were generated (Table S-2).

Vlife MDS											
Compound	PLP score										
Rolipram	-59.35 kcal/mol										
5d	-89.26 kcal/mol										
5j	-91.51 kcal/mol										
SWIS	SDOCK										
Compound	ΔG										

Table S-2. The PLP scores of compounds and the reference compound rolipram and ΔG values of compounds.

5d	-8.16 kcal/mol
5j	-8.40 kcal/mol

Molecular Interactions: The H-bonds and hydrophobic interactions were analyzed post docking simulations and the results showed good binding modes in the active site of PDE4B. The molecular interactions summary of top-ranked docking poses of compounds **5d** and **5j** with PDE4B are listed in Table S-3.

Table S-3. H-bonds and hydrophobic interactions of compounds with PDE4B

Molecular interactions												
Compounds	Hydrogen bonds	Hydrophobic bonds										
5d	CYS432	SER429, MET431										
5j	PRO430	SER429, GLN284										

The compound **5d** and **5j** showed good binding affinity as compared to standard drugs which revealed that the nature of the substituent and substitution pattern on the basic ring may have a considerable impact on the PDE4B activity of the synthesized compounds. Docking studies demonstrated that both the compounds were binding in the solvent filled side pocket residues in the active site of PDE4B. The **binding interactions of compounds with PDE4B are shown in Figure S-1 and S-2.** Dotted white bond showing H-bond interactions and yellow bonds shows hydrophobic interactions with binding site residues. Compounds and protein are represented by sticks and colored according to the atom type.

Figure S-1. Binding interaction of compound 5d with PDE4B receptor

Figure S-2. Binding interaction of compound 5j with PDE4B receptor

Copies of spectra

4,6-Diphenyl-2-(o-tolylamino)nicotinonitrile

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Even Electron Ions 96 formula(e) evaluated with 1 results within limits (up to 10 closest results for each mass) Elements Used: C: 0-30 H: 0-30 N: 0-5 O: 0-2 Br: 0-1

C263/MALO1/056 -----

15101600	5 18 (0.339)	Cm (17	:18)									3.28e+004
100				362.	.1669							
%	183. 147.1124	.0965	224.1295	301.1373	365.1970 366.1980	417.0981	517.1370 549.1	449 617.1375	5 680.4852	764.5858	847.4261 875.4663	963.5970
0 ++++	150	200	250	300 350	400	450	500 550	600	650 700	750 800	850 900	950 1000
Minimum Maximum	:		5.0	5.0	-1.5 100.0							
Mass	Calc	. Mas	s mDa	PPM	DBE	i-FIT	Formula					a the second sec
362.166	9 362.	1657	1.2	3.3	17.5	19.7	C25 H20	N3				

Page 1

A. TOF NO FO

TDC-206 C263/MAL01/056

4,6-Diphenyl-2-(phenylamino)nicotinonitrile

Elemental Composition Report Page 1 Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 2 Monoisotopic Mass, Even Electron Ions 48 formula(e) evaluated with 1 results within limits (up to 10 closest results for each mass) Elements Used: C: 0-30 H: 0-30 N: 0-5 O: 0-2 C263/MALO1/058 1: TOF MS ES+ 151016006 19 (0.352) Cm (18:19) 8.93e+004 348.1514 100 % 349.1546 365.2001 224.1290 183.0962 417.0974 286.1367 517.1350 549.1403 617.1316 683.0266 708.9659 366.2031 783.0594 147.1120 876.0325 965.1683 0 m/z 150 450 700 750 850 950 200 250 300 350 400 500 550 600 650 800 900 1000 Minimum: -1.5 5.0 100.0 Maximum: 5.0 i-FIT Mass Calc. Mass PPM DBE Formula mDa 6.7 348.1514 348.1501 1.3 3.7 17.5 C24 H18 N3

2-((2,3-Dimethylphenyl)amino)-4,6-diphenylnicotinonitrile

Elemental Composition Report

100

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Even Electron lons 47 formula(e) evaluated with 1 results within limits (up to 10 closest results for each mass) Elements Used: C: 0-30 H: 0-30 N: 0-5 O: 0-2 C263/MALO1/059 151016007 37 (0.695) Cm (37)

376.1801

1: TOF MS ES+ 3.62e+004

Page 1

%		224.	.1283		365.1959	377.1839												
0	183. 124.0844	0953	225.1312	34	48.1520	378.1852	432.2443	517.13	49 549.15	680	663.4597 680	0.4847	764.57	41 ^{786.5341}	828.5532	907.2667	972.6	332
0	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000
Minimum Maximum	:		5.0		5.0	-1.5 100.0												
Mass	Calc	. Mass	mDa		PPM	DBE	i-FIT	F	ormula									
376.1801	1 376.1	L814	-1.3		-3.5	17.5	1.9	С	26 H22	N3								

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Even Electron lons 58 formula(e) evaluated with 1 results within limits (up to 10 closest results for each mass) Elements Used: C: 0-27 H: 0-30 N: 0-5 O: 0-2 F: 0-1 C263/MALO1/061 151016008 22 (0.412) Cm (21:22)

1510160	08 22 (0.4	12) Cm (2	21:22)										Ŕ	N			1: TC	F MS ES+
100						396.1513								H]				2.190+004
%	183.1	002 2	24.1293		376.181	6 397.1	562						F					
0	124.0847		256.156	67 279.1	632 365.1994	398.1	574	496.970	2 517.1273	610.1899	68	0.4846	758.2275	83	2.2465	906.2728	98	2.2834
0	150	200	250	300	0 350	400	450	500	550	600	650	700	750	800	850	900	950	1000 m/z
Minimu Maximu	m: m:		5.	0	5.0	-1.5 100.0												
Mass	Ca	lc. Ma	ss mD	a	PPM	DBE	i-FIT		Formula									
396.15	13 39	6.1512	0.	1	0.3	17.5	1.6		C25 H19	N3 0	F							

0

Page 1

6-Phenyl-2-(phenylamino)-4-(thiophen-2-yl)nicotinonitrile

Elemental Composition Report	Page 1
Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 2	
Monoisotopic Mass, Even Electron lons 20 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-25 H: 0-17 N: 0-5 S: 0-2 C263/MALO1/063 160122006 54 (1.003) Cm (51:54-79:87x0.500)	1: TOF MS ES+ 1.75e+003
100 % 241.0157 282.2398.292.0929 331.2833 241.0157 282.2398.292.0929 331.2833 378.0129 430.9087 476.3844 512.9807.523.4791 566.5449 588.5567 646	.6183 679.4810
O-parametering O-param	660 680
Mass Calc. Mass mDa PPM DBE i-FIT Formula 354.1068 354.1065 0.3 0.8 16.5 6.4 C22 H16 N3 S	

4-Isobutyl-6-phenyl-2-(o-tolylamino)nicotinonitrile

Elemental Composition Report

100

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Even Electron lons 48 formula(e) evaluated with 1 results within limits (up to 10 closest results for each mass) Elements Used: C: 0-30 H: 0-30 N: 0-5 O: 0-2 C263/MALO1/064 151119005 21 (0.400) Cm (21:24)

342.1984

1: TOF MS ES+ 1.87e+005

Page 1

%	124.0868	166.0975	267.1483	296.1997	343.2 344.2	2020 2053 391.2841	494.42	30 5	532.3322	602.53	78 607.4943	680.483	0	764.575	6 ^{786.5377}	828.5546	907.2653	958.6524	982.2719
U	150	200	250	300	350	400	450	500	550	600	65	0 7	00	750	800	850	900	950	1000
Minimu Maximur	m : m :		5.	0 5	.0	-1.5 100.0													
Mass	Cal	.c. Mass	mD.	a F	PM	DBE	i-FIT		Formula										
342.198	84 342	.1970	1.	4 4	.1	13.5	25.2		C23 H24	N3									

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Even Electron Ions 63 formula(e) evaluated with 1 results within limits (up to 10 closest results for each mass) Elements Used: C: 0-27 H: 0-30 N: 0-5 O: 0-2 F: 0-1 C263/MALO1/065 151016009 73 (1.358) Cm (73:74)

1: TOF MS ES+ 1.43e+004

Page 1

100					3	92.1747												
%	183.1024	224.	1292 279.1614	307.1879	376.1823	393.177 394.18	73 05 433.3354	492.23	187 600.	5016	663.4585 680	0.4789	786.5349	828	.5496	900.7503	934.591	4 973.65 <u>44</u>
0 Hillin	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000
Minimum: Maximum:			5.0	5	.0	-1.5 100.0												
Mass	Calc.	Mass	mDa	PI	PM	DBE	i-FIT	F	formula									
392.1747	392.1	763	-1.6		4.1	17.5	1.6	C	C26 H22	N3	0							

4-Isobutyl-6-phenyl-2-(phenylamino)nicotinonitrile

Element	tal Composition F	Report												Page 1
Single Tolera Elemer Numbe	e Mass Analysis nce = 10.0 PPM / nt prediction: Off er of isotope peaks u	DBE: min = -1	5, max = 1 2	00.0										
Monoise 48 form Elemen C: 0-27 C263/M/ 1510160	otopic Mass, Even Ele ula(e) evaluated with ts Used: 7 H: 0-30 N: 0-5 ALO1/071 A 011 20 (0.366) Cm (20)	ctron lons 1 results within li O: 0-2	mits (up to	10 closest n	esults for	each mass)					CN NH			1: TOF MS ES+
100 -		3	28.1810								<u>_</u>			1.77e+005
-														
%			329.1878	1										
1	15.0824 183.1004	281.1656	330.192	392.180	3 53	20.3702 538.5203	647.	4614 680.	4816	764.570	6786.5350	865.6935	893.7346	990.6312
0	150 200	250 300	350	400	450	500 550	600	650	700	750	800	850	900	950 1000
Minimu Maximu	m: m:	5.0	10.0	-1.5 100.0										
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Formula								
328.18	10 328.1814	-0.4	-1.2	13.5	27.3	C22 H22	N3							

4-(4-Nitrophenyl)-6-phenyl-2-(phenylamino)nicotinonitrile

4-(4-Nitrophenyl)-6-phenyl-2-(phenylamino)nicotinonitrile

D₂O exchange

Page 1

AURIGENE

2-((4-Bromophenyl)amino)-6-phenyl-4-(thiophen-2-yl)nicotinonitrile

Single Mass Analysis Tolerance = 10.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Even Electron Ions 127 formula(e) evaluated with 1 results within limits (up to 10 closest results for each mass) Elements Used: C: 0-27 H: 0-30 N: 0-5 O: 0-2 S: 0-1 Br: 0-1

C263/MALO1/073 B 151016013 21 (0.399) Cm (21:26-5:11x0.500)

100							43	4.0179											2.74e+004
-				281.	1647	:	392.1778												
					328	.1815													
%	183.1 166.0981	014	224.1	289 279.1605	282.1697	329.1857		435.0200 436.0199	538.	5228 566.55	647.4 16	589 680.	4799 684.6127	764.5729	786.5340	828.5511	906.2711	98	1.2866
0	150	1.0	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000 m/z
Minimur Maximur	m: m:			5.0	1	0.0	-1.5 100.0												
Mass	Ca	lc.	Mass	mDa	P	PM	DBE	i-FIT		Formula									
432.019	99 43	2.0	170	2.9	6	.7	16.5	4.4		C22 H15	N3 S	Br							

Page 1

1: TOF MS ES+

6-(4-Chlorophenyl)-2-((2,3-dimethylphenyl)amino)-4-phenylnicotinonitrile

Element	al Com	positio	n Report													1	Page 1
Single M Tolerance Element p Number o	ass An = 5.0 Pl rediction f isotope	alysis PM / E n: Off peaks u)BE: min = ised for i-F	-1.5, max = 1 IT = 2	00.0												
Monoisotop 54 formula(Elements L C: 0-27 C263/MALO 151016014 2	bic Mass, (e) evalua Jsed: H: 0-30 1/073 C 24 (0.440)	Even Ele ated with N: 0-5 Cm (23:26	ctron lons 1 results wi O: 0-2	thin limits (up to Cl: 0-1	10 closest	results for ea	ach ma	ss)		C						1: TO	F MS ES+
100 -					410.14	31				0.							1.240+005
%	183.1015	224.1:	281.1 283	⁶⁴¹ 328.1805 ³⁹²	41	2.1416 13.1447 476.311	01 5	66.5516610	.1857 ^{647.4}	597 68	0.4794	764.574	5 ^{786.5363}	3 832.2426	906.2554	98	2.2785 m/z
	150	200	250	300 350	400	450	500	550	600	650	700	750	800	850	900	950	1000
Minimum: Maximum:			5.0	5.0	-1.5 100.0												
Mass	Calc	. Mass	mDa	PPM	DBE	i-FIT	F	ormula									
410.1431	410.3	1424	0.7	1.7	17.5	4.5	c	26 H21	N3 C1								

TDC-206 C263/MAL01/073-C

4-(4-Bromophenyl)-6-phenyl-2-(o-tolylamino)nicotinonitrile

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Even Electron Ions 68 formula(e) evaluated with 1 results within limits (up to 10 closest results for each mass) Elements Used: C: 0-30 H: 0-30 N: 0-5 O: 0-2 Br: 0-1

C263/MALO1/075 A 151119007 21 (0.400) Cm (21:23)

Page 1

4-(Furan-2-yl)-6-phenyl-2-(o-tolylamino)nicotinonitrile

Single Mass Analysis

Tolerance = 20.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Even Electron lons

42 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-30 H: 0-23 N: 0-6 O: 0-2

C138/MALO1/008 160122004 28 (0.514) Cm (27:28-49:52x0.500)

1: TOF MS ES+ 2.94e+002

Page 1

6-(4-Cyanophenyl)-2-((2,3-dimethylphenyl)amino)-4-phenylnicotinonitrile

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Even Electron Ions 44 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-30 H: 0-25 N: 0-6 S: 0-2 C138/MAL01/008 B 160122005 43 (0.796) Cm (43:47-69:73x0.500)

Page 1

1: TOF MS ES+ 8.45e+002

TDC-206 C138/MAL01/008(B)

2-((2,3-Dimethylphenyl)amino)-6-phenyl-4-propylnicotinonitrile

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Even Electron Ions 10 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-26 H: 0-25 N: 0-5 C138/MALO/013(A) 160324005 88 (1.617) Cm (87:93-101:104x0.500)

Page 1

1: TOF MS ES+

TDC-206 C138/MAL01/013A

A.R.No: ME0216/1202

Analyst	I	Mallikarjun
Solvent	I	cdc13
Date	1	Feb 13 2016
NUCLEUS	I	C13
FRQ (MHZ)	I	100.65
EXP		CARBON

49

Data Filename	160630003.d	Sample Name	C138/MALO1/033 A	
Sample Type	Sample	Position	Vial 65	\bigcirc
Instrument Name	Instrument 1	User Name		I cn
Acq Method	ESI.m	IRM Calibration Status	Success	- FTC
DA Method	CACH8.m	Comment		

User Spectra

¹HNMR spectra of compound 6 (Table 1) in CDCl₃

Mass Analysis Report

- Paule mai

Data Filename	160517003.d	Sample Name	C263/MAL01/056 Int
Sample Type	Sample	Position	Vial 43
Instrument Name	Instrument 1	User Name	
Acq Method	ESI.m	IRM Calibration Status	Success o
DA Method	CACH8.m	Comment	

User Spectra

CPS, MIYAPUR

1 HNMR spectra of compound 7 in CDCl₃

¹HNMR spectra of compound **8** in CDCl₃

IR spectra of recovered and fresh FeF₃ catalyst

