Electronic Supplementary Information

Selective and Sensitive Colorimetric Sensor for CN- in Absence and Presence of Metal Ions

(Cu2+/Ni2+): Mimicking Logic Gate Behaviour

Nirma Maurya, Shubhrajyotsna Bhardwaj, Ashok Kumar Singh Indian Institute of Technology Roorkee, Roorkee (247667), India

ESI Fig. S1: FTIR spectrum of L1.

ESI Fig. S2: ¹H NMR spectrum of L1 in d_6 DMSO.

ESI Fig. S3: ¹³C spectrum of L1 in d_6 DMSO Probe.

ESI Fig. S4: FTIR spectrum of L2.

ESI Fig. S5: ¹H NMR spectrum of L2 in d_6 DMSO.

ESI Fig. S6: ¹³C spectrum of L2 in d_6 DMSO Probe.

ESI Fig. S7: (a) Absorption titration spectra of L2 upon addition 0-3 eq. of CN⁻, Inset: Jobs plot shows 1:1; (b) Benesi-Hilderbrand Plot and detection limit of L2 for the binding of CN⁻ in 10% aq.-DMSO solution (HEPES buffer 7.4).

ESI Fig. S8: (a) Interaction of L1 upon 5 eq. of anions in 100% DMSO solution; (b) Interaction of L1 upon 5 eq. of metal ions in 10% aq.-DMSO solution (HEPES buffer 7.4).

ESI Fig. S9: Absorption titration spectra of L1 upon addition of (0-3.2) eq.Cu²⁺ Inset: Jobs plot shows 1:2 and (0-1.5) eq. of Ni²⁺ Inset: Jobs plot shows 1:1 in 10% aq.-DMSO solution (HEPES buffer 7.4).

ESI Fig. S10: Benesi-Hilderbrand Plot and Limit of detection for the binding of CN⁻ (a) L1-Cu²⁺ (b) L1-Ni²⁺ complex.

ESI Fig. S11: Stacked ¹H NMR titration of L2 in d_6 DMSO.

ESI Fig. S12: DFT Optimized structure and HOMO/LUMO energy band gap of L2 and L2-CN⁻.

ESI Fig. S13: Absorption titration spectra of (a) Probe; (b) Probe-Cu²⁺; (c) Probe-Ni²⁺ with TBAOH solution.

Table S1: Solvatochromic studies of L1 with CN⁻ in different polar solvents.

Table S2: Comparison of proposed probe with previously reported (containing –NH group)

 literatures by colorimetric method

Table S3: Analytical results of CN⁻ detection in water samples.

ESI Fig. S1: FTIR spectrum of L1.

ESI Fig. S2: ¹H NMR spectrum of Probe in d_6 DMSO.

ESI Fig. S3: ¹³C spectrum of L1 in d_6 DMSO.

ESI Fig. S4: FTIR spectrum of L2.

ESI Fig. S5: ¹H NMR spectrum of L2 in d_6 DMSO.

ESI Fig. S6: ¹³C spectrum of L2 in d_6 DMSO.

ESI Fig. S7: (a) Absorption titration spectra of L2 upon addition 0-3 eq. of CN⁻, Inset: Jobs plot shows 1:1; (b) Benesi-Hilderbrand Plot and detection limit of L2 for the binding of CN⁻ in 10% aq.-DMSO solution (HEPES buffer 7.4).

ESI Fig. S8: (a) Interaction of L1 upon 5 eq. of anions in 100% DMSO solution; (b) Interaction of L1 upon 5 eq. of metal ions in 10% aq.-DMSO solution (HEPES buffer 7.4).

ESI Fig. S9: Absorption titration spectra of L1 upon addition of (0-3.2) eq.Cu²⁺ Inset: Jobs plot shows 1:2 and (0-1.5) eq. of Ni²⁺ Inset: Jobs plot shows 1:1 in 10% aq.-DMSO solution (HEPES buffer 7.4).

Determination of the detection limit

The detection limits of L1/L2 were determined from 3σ /slope, where σ is the standard deviation of the blank solution; S is the slope of the calibration curve.

CN ⁻ complex	SD	Slope CN ⁻
L1	0.0097	38419
L2	0.00675	29834
L1+Cu ²⁺	0.009	7534
L1+Ni ²⁺	0.0041	1931.8

ESI Fig. S10: Benesi-Hilderbrand Plot and Limit of detection for the binding of CN⁻ (a) L1-Cu²⁺

ESI Fig. S11: Stacked ¹H NMR titration of L2 in d_6 DMSO.

ESI Fig.S12: DFT Optimized structure and HOMO/LUMO energy band gap of L2 and L2-CN⁻.

ESI Fig. S13: Absorption titration spectra of (a) L1; (b) L1-Cu²⁺; (c) L1-Ni²⁺ with TBAOH solution.

Table S1: Solvatochromic studies of L1 with CN⁻ in different polar solvents.

Solvent	λ_{abs} of L1	λ_{abs} of L1-CN ⁻
DCM	306	310
ACN	306	427
DMSO	308	455
МеОН	310	465

Table S2: Comparison of proposed probe with previously reported (containing –NH group)

 literatures by colorimetric method.

Previously literatures	Selective	Solvent	Binding Constant (M ⁻¹)
	Anions	System	
Tetrahedron Letters	F ⁻ , AcO ⁻	ACN	$1.22 \times 10^4, 2.59 \times 10^4$
2013, 54, 5612–5615			
(28a)			
Anal. Methods, 2013,	F ⁻ , AcO ⁻	DMSO	4.30×10^3 , 3.80×10^3 (S1)
5, 6401–6410 (28b)			$2.26 \times 10^4, \ 2.13 \times 10^4 (S2)$
RSC Adv., 2016, 6,	CN ⁻ , S ²⁻	buffer/DMSO	4.20×10^3 , 1.20×10^3
16586-16597 (28c)		(1:9, v/v).	

Analytica Chimica	F-, CN-	DMSO	
Acta, 2010, 663,77–84			
(28d)			
Sensors and Actuators	F-, CN-	50% aq. DMF	5.53×10^5 , 8.27×10^4 (R-Cu complex)
B, 2016, 231, 768–778			$7.58\times10^5,9.87\times10^4$ (R-Co complex)
(28e)			2.60×10^6 , 9.04×10^4 (R-Ni complex)
			7.13×10^4 (R-Zn complex)
Sensors and Actuators	CN ⁻ , AcO ⁻	DMSO	7.52, 7.07 (N1)
B, 2014, 204, 125–135			8.52, 7.86 (N2)
(22a)			
Dalton Trans., 2016,	F ⁻ , CN ⁻	ACN (2.5%	1.17×10^4 , 4.9×10^4 (R)
45, 1166-1175 (16d)		DMSO)	1.37×10^5 , 1.19×10^4 (R-Cu complex)
This work	CN-	H ₂ O -DMSO-	3.83×10^4 (R)
		(10%)	1.72×10^5 (Cu complex)
			2.80×10^5 (Ni complex)

R= synthesized ligand

Table S3: Analytical results of CN⁻ detection in water samples.

Sample	Added	By Absorption	Determined [Recovery%
	[CN-](µM)	spectra[CN-] ^a	CN-](µM)	
	added	(µM)	AAS	
Roorkee	20	19.8 ± 0.5	19.86	99%
Tap water				
Haridwar	20	19.7 ± 0.2	19.82	98.5%
water				
Roorkee	20	19.96 ± 0.7	20.1	100.5%
water				

^aMean value ± standard deviation (triplicate measurement)